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Overview

The initial six months of this research grant consisted of two major efforts:
extension of existing work on OFMspert, and initiation of research on tutoring principles
and models for complex, dynamic system, in particular, applications in Goddard Space
Flight Center (GSFC) ground control systems. This research builds on the work done
under the previous GSFC contract (ending December 1987) and research supported by

NASA Ames Research Center, NAG 2-413 (Everett Palmer, Technical Monitor).
OFMspert Research

At the commencement of this grant, the first phase of the Ally empirical evaluation
was performed. Ally is the implementation of OFMspert with control properties and a
particular operator interface. The experiment evaluated the effectiveness of a supervisory
control team consisting of a human operator and Ally versus a control team consisting of
two human operators. The experiment was carried out in the GT-MSOCC (Georgia Tech
MultiSatellite Operations Control Center) domain, a Georgia Tech research tool consisting
of a high fidelity implementation of the operator interface to MSOCC, a GSFC ground
control system.

The Ally experiment was one of the first of its kind: a rigorous empirical
evaluation of the effectiveness and dynamics of a cooperative team of a human operator
and an expert system. The Ally research comprised the doctoral dissertation for Major
James B. Bushman (Air Force); the research was successfully defended in December 1988.
The dissertation will be published this spring as a Center for Human-Machine Systems
Research technical report. In addition, the research will be prepared for publication in
several conference proceedings and two journal papers. Preliminary results of this

research were presented at a colloquium in October at Goddard Space Flight Center and at



. the annual symposium on the Empirical Foundations of Information and Software
Sciences (EFISS). Viewgraphs from the GSFC colloquium and EFISS presentations are
contained in Appendix A.

In another aspect of this work, Ms. Patricia M. Jones won the annual Human
Factors Society award for the best student paper at the 1988 meeting in October. Her paper,
contained in Appendix B, was based on her masters thesis, an extensive empirical
evaluation of the intent inferencing capabilities of OFMspert. Appendix C contains a
second paper describing OFMspert research and interaction that was presented at EFISS
conference and published in the conference proceedings and as Center technical report. A
more complete version of her work is in the review process for the International Journal of
Man-Machine Studies.

The final portion of OFMspert research conducted during this period was the port of
the OFMspert/Ally code from Smalltalk-80 to Allegro Common Lisp. For a variety of

. reasons the OFMspert/Ally system implemented in Smalltalk-80 was unstable and
proving very difficult to extend in further research directions. As a result, considerable
effort over the last 6 months was spent in converting OFMspert/Ally from Smalltalk-80 to
Allegro Common Lisp with PCL (Portable Common Loops) object extensions. The new
OFMspert implementation will run on a variety of platforms including the Macintosh 1I,
where it was implemented, a Sun 3/60, and a NeXT machine. The conversion of this
research, though time consuming, will allow the rapid extension of the work into new
research directions. Copies of the Allegro Common Lisp code are available from the Dr.

Christine Mitchell.
Intelligent Tutoring for Space Systems

There are three aspects the tutoring research at Georgia Tech. The first is the

. conclusion of the ITSSO (Intelligent Tutoring System for Satellite Operators). The next



few months should see the publication of the ITSSO technical report. ITSSO was an
interesting piece of exploratory research. Contrary to expectations, ITSSO did not result in
enhanced operator performance. The experiment compared subjects trained with ITSSO
with a control group whose subjects did not receive explicit tutoring but were allowed to
interact freely with the simulated system (GT-MSOCC) for the same amount of time as the
ITTSO subjects spent training with the tutoring system. For a range of performance
measures, ITSSO-trained subjects performed no better, and in some cases worse, than
subjects who were not tutored but only 'played’ with the system.

Several interesting points are suggested by this research. First, the results may
have been biased by the restrictions of the experimental design used in this research. The
experimental design restricted ITSSO interaction to exactly the time allowed for the
subjects in the control group to ‘practice’ with the system (about 5 hours). It may be the case
that intelligent tutoring systems require more time than unstructured practice. Although
the results looked negative in the context of this experiment, in actual systems a tutoring
system that provide a broad and structured experience with a complex system would be
worth the additional hours or days of training. Hence, one possibility suggested by the
ITSSO experiment is the necessity for improved experimental design.

A second consideration in understanding the ITTSO results is the ITSSO
philosophy of training: the ITSSO design was based on a 'bottom-up’ perspective. Subjects
were introduced to individual 'scenarios’, one task or problem at a time. A great deal of
the training time was spent working exclusively on a single task, a decision at the heart of
the ITSSO design. In the GT-MSOCC domain, as in most supervisory control systems, the
operator typically has to handle several tasks concurrently. It may be that the ITSSO
training reduced the subjects’ abilities to handle multiple competing tasks. The control
group, however, interacted with the system using scenarios where there were frequently
multiple tasks that needed to be monitored or executed--sessions more typical of the actual

GT-MSOCC supervisory control functions.



The combination of the 'bottom up' tutoring decision and the restrictive
experimental design in which ITSSO subjects were not allowed sufficient time in which to
train in a multi-tasks environment may be the causes of the unexpected experimental
results. Future research will examine these finding more closely.

Two other tutoring projects were also undertaken during this past six months. One
was the examination of the possibility of extending OFMspert to be both a tutor for novices
as well as an assistant for experienced operators. A copy of a preliminary report is
included in Appendix D.

Finally, research is underway to assess each of the tutoring models and
methodologies that Etienne Wenger (Artificial Intelligence and Tutoring Systems:
Computational and Cognitive Approaches to the Communication of Knowledge,Morgan
Kaufman Publishers, Los Altos, CA, 1987) reviews in his recent text. The assessment will
result in a technical report that will briefly describe each of the intelligent tutoring system
(ITS) models, assess its potential contribution to tutoring operators in complex dynamic
systems, such as NASA .ground control systems, and illustrate its potential contribution in
the context of the the GT-MSOCC domain. A preliminary draft of this work is provided in

Appendix E.
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Appendix A

View Graphs for GSFC Colloquium on OFMspert

October 1988
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Overview of Georgia Tech Activities

Operator Function Model (OFM)
GT-MSOCC (a research laboratory)
Model-Based Operator Workstations
Multi-Modal Operator Interaction
OFMspert (Operator Function Model Expert System)
Ally: OFMspert with Control Capabilities

JIntelligent Tutoring System for Satellite Operators
ITSSO and OFMTutor




TYPES OF APPLICATIONS

Complex, dynamic systems with high costs or_risks
associated with human error.
--space
--manufacturing
--process control and distribution systems

--military C2

Human operator functions as a supervisory controller

--monitors predominantly automated control systems

--fine tunes in response to unexpected changes in predicted system
behavior

--fault detection, diagnosis, and compensation



EXPERIMENTAL ENVIRONMENT

MSOCC:
MULTISATELLITE OPERATIONS CONTROL CENTER

-Actual system at NASA/GSFC

- Coordinates use of shared computer and
communications equipment

- System is now manual, moving towards
automation

GT-MSOCC
- Developed at Georgia Tech

- Simulation of future automated MSOCC
system

- Discrete event, Real Time, Interactive
simulation



OVERVIEW OF GT-MSOCC RESEARCH

MSOCC
v

GT-MSOCC

v

OFM of

GT-MSOCC

Interface
Based on NASA

Proposal

v

l

Interface
Based on.OFM

Introduction
of Voice Input
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GT-MSOCC OPERATOR RESPONSIBILITIES

- SUPERVISE SPACECRAFT CONTACTS CURRENTLY
BEING SUPPORTED

- COMPENSATE FOR AUTOMATED SCHEDULE
PROBLEMS

- RESPOND TO REQUESTS FOR UNSCHEDULED
SPACECRAFT CONTACTS

- DECONFIGURE ALL MANUALLY CONFIGURED
EQUIPMENT STRINGS



Operator Function Model (OFM)

* a mathematical tool to represent operator interaction with
predominantly automated space ground control systems

(cognitive task analysis for system analysis and design).

* OFM's structure represents cognitive as well as physical operator
tasks.

* useful for the design of operator workstations and displays (model-

based iconic displays).

* useful for the design of an "intelligent” operator's associate (OFMspert
and Ally).

* useful to represent the task knowledge in the design of an intelligent
tutoring system (ITSSO and OFMTutor).
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Figure 1. A Generic Operator Function Model



OFM STRUCTURE

OFM is a network with nodes represented as non-
deterministic, finite-state automata.

Higher level nodes represent operator goals; decomposition

' represents how operator coordinates control actions
and system configuration so that acceptable overall
system performance is reached.

Next-state transition functions model system triggering
" events

" Generic OFM network
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Figure 2. A Generic Operator Function Model
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® Primary Features of OFM-Based Interface

DYNAMIC ICONS
- Qualitative Representation
- High Level View of System Functioning

- Detailed View of Data Propagation

‘ COMPUTER WINDOWS
- Alphanumeric, Overlapping Windows
- Contents Determined by OFM

- Placement Determined by OFM



TWO-MONITOR OFM-BASED INTERFACE

SOLAR

PM

KEYBOARD




EXPERIMENTAL DESIGN

10 SUBJECTS USED EACH INTERFACE
12 EXPERIMENTAL SESSIONS (45 MINUTES EACH)
- 5 TRAINING SESSIONS

- 7 SESSIONS FOR DATA ANALYSIS

INDEPENDENT MEASURES
- DISPLAY CONDITION
- SESSION

- SUBJECT

DEPENDENT MEASURES
- FAULT COMPENSATION (4 MEASURES)

- EQUIPMENT CONFIGURATION AND
DECONFIGURATION (5 MEASURES)

- OPERATOR ERROR (2 MEASURES)



Operator Performance Measures

Time to fix system problems:

--fix hardware failures.

--fix each of 3 software failures.
--compensate for automated schedule
problems.

--deconfigure manually configured equipment

Number of operator errors:
--operator caused schedule conflicts.
--unnecessary equipment replacements.

Time to respond to ad hoc requests for
equipment.

Accuracy of response to ad hoc requests.




MEAN SCORES PER SESSION

MEASURES ICON/WINDOWS KEYBOARD VOICE
Time to detect hardware failures 42.5s" 56.4s 88.0s"
Time to detect SW no flow 56.9s" 312.4s 369.4s
Time to detect SW decreased flow 71.2s" 398.9 438.9s
Time to detect high error count 206.0s" 356.7s 391.7s
Time to deconfigure 11.1s* 22.6s 28.0s

Time to compensate for 46.5s 75.9s 82.9s

automated schedule problems

Number of operator-caused .16* .70 .93

schedule conflicts




MEAN SCORES PER SESSION
MEASURES ICON/WINDOWS KEYBOARD VOICE
# of Unnecessary Replacements .23* 1.13 1.14
’ Good Displays Called 45.5 24.5"
Bad Displays Called 2.5 1.1*




THE AUDOPILOT VOICE INTERFACE

o Isolated word, single user recognition
o Template-matching algorifhm

® Three background noise levels

o Hierarchical vocabularies

o Up to 64 words per vocabulary

o Manufacturer-reported 98% accuracy

) Desk-top microphone
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Use of Artificial Intelligence in

Supervisory Control

Human-machine mix where artificial intelligence, advanced
automation, robotics, and human supervisory control are
integrated in an effective human-machine system.

Aaron Cohen & Jon D. Erickson

Johnson Space Center
Advanced Technology Advisory Committee
NASA Technical Memorandum, April 1985



Major Research Issue

How to use artificial intelligence Iin system
control?
Replace human operator
or

Amplify human operator's abilities to monitor
the system and detect, diagnose and
compensate for system failures?




Objective of OFMspert Research

Design an architecture to provide the human
operator with an intelligent decision
support system

-- to augment, not replace, the versatile
human skills with skills provided by
machine intelligence.

-- to compensate for known human
limitations.

-- to complement individual human
preferences

Develop a theory of human-computer
interaction in the control of complex,
dynamic systems (normative, plausible)

Build a model of the theory to demonstrate
and empirically evaluate the proposed
architecture (operator's associate)



Requirements for an

Intelligent Operator's Associate

Operator's Associate must provide
information and control abilities at
the right time, of the right kind and
with the ease of a human associate

-- understanding
-- control

-- jinterface

Understanding requires a model of the
operator and system that can allow the OA
to infer the operator's current
control goals given knowledge of the
control task, system functions, and current
control state.



OFMépert Characteristics

OFMspert (operator Function Model Expert
System) is an intelligent operator's
associate based on the operator function
model (Mitchell, 1987)

OFMspert uses the Operator Function Model
(OFM) to represent knowledge about the

operator

OFMspert uses the blackboard model of
problem solving (Nii, 1986) to maintain a
dynamic representation of operator goals,
plans, tasks, and actions given previous
operator actions and current system state



Figure 1. A Generic Operator Function Model
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COMPONENTS OF THE BLACKBOARD MODEL:

Blackboard data structure

Contains the set of partial and complete solutions known as
the solution space.

Divided into levels of information where each level
represents a distinct level of abstraction in the solution
space.

The highest level of abstraction

Blackboard data structure



Controlled System

WE [@
]

GT-MSOCC
VAX 11/780
BRL 4.3 UNIX

=




Experimental Validation

of OFMspert's Intent Inferencing

- Compare a domain expert's interpretations
of operator actions to OFMspert's

interpretation of those actions.

- Compare verbal protocols of subjects
verbalizing their intentions for each
action to OFMspert's interpretations

of those actions.



Table 3. Experiment 1: Average Percentage of Equivalent
Interpretations between ACTIN and a Human Domain Expert.
Ordered by rank.

Configure 100%
Endpoint telemetry page requests 100

Deconfigure 97.1
Telemetry page requesté 96.3
Answer 91.4
Reconfigure 91.2
Interior telemetry page requests 87.1
Replace 75.3
Mission schedule page requests 66.7
MSOCC schedule page requests 50.3
Equipment schedule page requests 21.8
Events page request ' 17.7
Pending page request 16.7




Table 5. Experiment 2: Average Percentage of actions

matched by OFMspert

Configure 100%
Deconfigure 100

Answer 96.2
Replace 94.8
Equipment schedule page requests 90.3
Mission schedule page requests 85.7
Interior telemetry page requests 84.3
Endpoint telemetry page requests 76.5
MSOCC schedule page requests 75.5
Telemetry page requests 70.2
Reconfigure | | 60.8
Events page request ' 53.9

Pending page request 33.3




Telem

Endpoint
Telem

Interior
Telem

MSOCC
Sched

Equip
Sched

Mission

Sched

Events

Pending

Deconfig

Reconfig

Config

Replace

Answer

Table 2. Experiment 1:

Proportions of Equivalent Interpretations
between ACTIN and a Human Domain Expert

Subject
1 2 3 4 5 6 7 8 10
717 32/3+ 11/1%2 22/23 40/41 11/1 39/4+ 18/1* 28/2& 29/2*
2/2 | 25/2%2/2 | 13/13 27/27 4/4 | 24/24 8/8 19/1

14/14 29/38 27/3T 20/2]

b 17/24

} 20/22 25/29% 18/1& 42/5+ 22/27

14/24 7711 14/2# 10/34! 2/2? 7/2é‘ 18/3'( 10/1' 13/1$ 6/11
5/12 1/15 10/2+ 7/8'? 0/11? 0/7# 3/11] 24/48 10/%) 2/2#
1/23 1/1# 2/1& 0/6# 2/7 3/2# 5/10 1/1'/1‘ 3/9
-- -- -- on -- 0/1 0/1 | 1/2 --
12/1'216/1.$11l1' 15/1'512/1"12/1'219/1'312/1‘2 516/1.6
4/4 | 6/7 | 1/1 | 2/3 6/6' 6/6' 8/8' 2/2 5/5'
3/3 | 4/4 | 3/3 | 4/4 | 3/3 -- 4/4 ] 3/3 4/4
12/1'1! 13/18 12/17 14/1"' 14/21 12/18 14/22 12/1: 5/21
5/5 | 3/7 | 5/6 8/8. 7/8. 9/9' 8/8. 8/8‘ 9/9.

* Significantly good match
# Significantly poor match



Table 4. Experiment 2: Proportions of Equivalent Interpretations
between ACTIN and Verbal Reports

Subject
21 22
Telem 30/42 * 40/58 *
Endpoint 33/39 * 26/38 *
Telem
Interior 15/19 ° 26/29 *
Telem
36/45 * 22/31 *
MSOCC
Sched ;
4/4 25/31 *
Equip
Sched
8/8 ° 5/7
Mission
11/18 7/15
Events
0/3 4/6
Pending
31/31 * 30/30 *
Deconfig
7/15 6/8
Reconfig 5/5 R 3/3
Config 23/23 * 26/29
Replace 12/12 * 12/43 °*
Answer .

Significantly good match (B> b(0.025,n,0.5)
# Significantly poor match (B< n-b(0.025,n,0.5)



GT-MSOCC

Ally Workstation




321/19:18:48

Mission
Support

Equipment
Support

Check

Replace

Support

AE-QL
SS
ALL

Reconfigure
Support

1

INTERRUPT

321/19:14:58: Real Operation Resumed

321/19:17.06: AE-QL is due down at 321/19:29:00

321/19:18:55: TAC4 is not available for 3 minutes

Figure 10. Example of Ally's User Interface
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Mean Time to Compensate for Software Type 1 Failures by Session
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Time (in seconds)

Mean Time to Compensate for Schedule Conflicts by Session
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Mean Number of Correct Responses to Support Requests by Session

Number of Correct Responses
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Time (in seconds)

Mean Time to Compensate for Hardware Failure by Session
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Time (in seconds)

Mean Time to Compensate for Software Type 1 Failures by Session
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Mean Time to Compensate for Software Type 2 Failures by Session
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Mean Time to Compensate for Software Type 3 Failures by Session
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Time (in seconds)

Mean Time to Respond to Support Requests by Session
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Mean Time to Configure Unscheduled Support Contacts by Session
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Time (in seconds)

Mean Time to Respond to Deconfigure Requests by Session
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Root Node: Supervisory Control of GT-MSOCC

F1: Control of Current Missions

Type of Failure Replaceable NonReplaceable
Hardware Failure S11 S15
No Data Relayed S12 S16
Half Normal Data S13 S17
Triple Normal Errors S14 S18

'F2: Configure to Meet Support Request
F3: Compensate for Automated Schedule Failures

F4: Manually Deconfigure a Mission

Figure 3 A Task Model
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COMPLEXITY AND PROBLEM
SOLVING

Three basic elements in problem solving
situations:

The World to be acted on,
The Agent who acts on the world,

The external representation of the world
utilized by the problem solving agent.

AGENT

REPRESENTATION

WORLD



WHAT MAKES
PROBLEM SOLVING
COMPLEX:

DIMENSIONS OF COMPLEXITY

® Dynamism

® Number of parts and extensiveness of
interconnections between parts

® Uncertainty

® Risk

DOMAIN OF INTEREST:
COMPLEX DYNAMIC SYSTEMS

® Human operator as a supervisory controller
® monitoring task

® troubleshooting task




QUESTIONS TO BE ADDRESSED

What are the specific skills with respect
to the four dimensions of complexity that
are necessary to carry out the tasks
involved in a CDS?

What are the goals of an ITS designed for a
CDS? What do we want the operator to
learn? Are the goals attainable?

What approaches in each module of an ITS
seem appropriate to a CDS and why? How
do we translate an approach in the context
of a CDS?

What about implementation issues and
"do-ability"? How much of the CDS world
should be represented in the ITS?

How do we evaluate the ITS (if
implemented) to test if the goals are
attained?




COMPONENTS OF AN
INTELLIGENT TUTORIAL SYSTEM

L Domain Expertise
o Student Model
o Pedagogical Expertise

o Interface

Figure 3. ACTIN's Intent Inferencing Structure




REVIEW OF APPROACHES

Domain Expertise:

o Information-structure-oriented paradigm (SCHOLAR,
1970)

Hierarchical scripts (WHY, 1977)
Finite state automata (METEOROLOGY, 1973)

o Multiple representations of procedural and
declarative knowledge (SOPHIE |, 1975; RBT, 1986)

® Qualitative modelling (STEAMER, 1984)
® Probabilistic model (INTEGRATION, 1973)
[ D-rules (MYCIN/GUIDON, 1979) |
Procedural networks (BUGGY, 1975)

@ Generalized AND/OR graph (REPAIR theory, 1980)
® Problem-solving models:

L Active structural networks (FLOW, 1974)

Linguistics theory (SPADE, 1976)

o
[ Dependency graphs (MACSYMA ADVISOR 1977)
o

Intention-based knowledge structure
(PROUST, 1984)

®  Operator function model (AHAB, 1987)




STUDENT MODEL

® Differential model (WEST, 1976)

® Overlay model (WUSOR-II, 1977; GUIDON,
1979) -

® Buggy model (BUGGY, 1978; MENO-II; PROUST,
1984)

® Limited bug model (AHAB, 1987)

INTERFACE

@ Textual (SCHOLAR, 1970; SOPHIE, 1975; WEST,
1976; GUIDON, 1979; PROUST, 1984; etc)

® Graphical (ALGEBRALAND, 1983; STEAMER,
1984; IMTS, 1986; RBT, 1986; AHAB, 1987)




REVIEW OF APPROACHES (cont'd)

Pedagogical Expertise:

Socratic method (WHY, 1977)

Reactive learning environment (SOPHIE |,
1975; MACSYMA ADVISOR, 1977)

Conceptual fidelity (STEAMER, 1984; AHAB,
1987) ‘

Progression of O-order qualitative models
(QUEST, 1986)

Curriculum Information Network (BIP, 1976)
Exploratory learning (LOGO, 1980)
Issues and examples paradigm (WEST, 1976)

Increasingly complex microworlds paradigm
(Fischer, et al., 1978)

Expert-based coaching (WUSOR-I, 1976)

Bite-sized architecture (SMITHTOWN, 1986)

Layered curriculum and steering test concept (MHO,
1987) ’

Discourse management networks (MENO-TUTOR,
1984)

T-rules (GUIDON, 1979)

ACT theory (GEOMETRY and LISP tutors, 1984)




OFMTutor

- Intelligent tutoring system for operators
of complex dynamic systems

- Baéed on the Operator Function Model (OFM)




Blackboard model of Interactions

N

A

¢
§!

' Q \.\\\\\
\ Corerasd

‘\.\\\.\\\\\.\ EITTTH \\‘
sy
rr o T T YLl

\
N

N

f\
I

Grtees,)

GOALS
model
derived

NS

LA

P
model
derived

TASK
model
derived

ACTION
data
derived




OFMTutor's Model of Expertise

Model derived representative of
Goals, Plans, and Tasks
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OFMTutor's Student Model

Data derived representation of
goals, plans, and tasks
based on student's actions
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OFMTutor's Pedagogical Strategy
and Diagnosis

Guided discovery/coaching in context
of system operation

Differential modeling techniques that

compare expert and student
blackboard models

Expert Blackboard Model ‘Student Blackboard Model
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Work in Process

* Design of a computer-based operator
associate that evolves from tutor to
assistant as the skills of the human
operator change from novice to expert.

* The refinement of the Ally interaction
¢ to allow cooperative problem solving
and repair of hypothesis formation.

* Evolution of a broader theory of 'good’
architectures utilizing human and
computer decision makers in
interactive control.



OFMTutor's Interface

Supports graphical, inspectable
representation of joint hypotheses
(expert and student)

Model of discourse enables
conversational capabilities
and supports repair
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ABSTRACT

This paper describes a portion of the OFMspert (Operator Function Model Expert System) research
project. OFMspert is an architecture for an intelligent operator’s associate or assistant that can aid the
human operator of a complex, dynamic system. Intelligent aiding requires both understanding and control.
This paper focuses on the understanding (i.e., intent inferencing) ability of the operator’s associate. Under-
standing or intent inferencing requires a model of the human operator; the usefulness of an intelligent aid
depends directly on the fidelity and completeness of its underlying model. The model chosen for this
research is the operator function model (OFM) (Mitchell. 1987). The OFM represents operator functions,
subfuncuons, tasks, and actions as a heterarchic-hierarchic network of finite state antomata, where the arcs
in the network are system triggering events. The OFM provides the structure for intent inferencing in that
operator functions and subfunctions correspond to likely operator goals and plans. A blackboard system
similar to that of HASP (Nii et al., 1982) is proposed as the implementation of intent inferencing function.
This system postulates operator intentions based on current system state and attempts to interpret observed
operator actions in light of these hypothesized intentions. The OFMspert system built for this research is
tailored for the GT-MSOCC (Georgia Tech Multisatellite Operations Control Center) simulation. The GT-
MSOCC OFMspent has been the subject of rigorous validation studies (Jones, 1988) that demonstrate its
validity as an intent inferencer.
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INTRODUCTION

Computational representations and models have been constructed for "undersianding” human
behavior in many applications; e.g., understanding natural language (Winograd, 1972) and understanding
stories (Schank and Abelson, 1977). Artificial intelligence has developed many representational formal-
isms and control strategies that are intended to mimic "intelligent” behavior (cf Cohen and Feigenbaum,
1982). In the field of human-machine systems research, Al techniques offer powerful methodologies for

understanding human behavior in the context of human-machine interaction.

Our particular concern is with human-machine interaction in the control of complex dynamic systems
(e.g., nuclear power plants). Such systems are highly automated; thus, the human operator acts as a super-
visory controller (Sheridan and Johannsen, 1976; Rasmussen, 1986; Wickens, 1984). Supervisory control
typically consists of routine monitoring and fine-tuning of system parameters. However, in the event of
abnormal or emergency situations, the human operator is expected o detect, diagnose, and compensate for
system failures. The ability of a supervisory controller to cope with such simations can be severely limited.
Wickens (1984) cites several problems with supervisory control: an increased monitoring load; a "false
sense of security™ whereby the operator trusts the automation 10 such an extent that any human intervention
or checking seems unnecessary; and "out-of-the-loop familiarity” that implies a reduced ability to cope with
non-routine situations.

An important question then becomes how to improve system performance and safety in supervisory
control. The answer is not to automate the humar out of the system; today’s technology cannot match the
human’s ability o cope with uncentain and nowve! situations (Chambers and Nagel, 1985). Rather,
automated systems must support the human operator  Given that the human will remain an integral part of
a complex system, a potential approach to advanced automation is that of "amplifying” rather than automat-

ing human skills (Woods, 1986).

The OFMspert (Operator Function Model Expert System) project is an effort to develop a theory of
human-computer interaction in supervisory control. OFMspert itself is a generic architecture for a

computer-based operator’s associate. The operator’s associate (and similarly, the Pilot’s Associate (Rouse
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et al. 1987; Chambers and Nagel, 1985)) represents a design philosophy that allows the human to remain in
control of a complex system. The computer-based associate is a subordinate to which the human operaior
can delegate control activities. The associate also actively monitors sysiem state and operator actions in
order to timely, context-sensitive advice, reminders, and suggestions. The intent is to provide intelligent

support for the human operator.

The intelligence and utility of the operator’s associate rest on its abilities to understand the operator’s
current intentions in order to provide context-sensitive advice and assume responsibility given for portions
of the control task. Models of human-machine interaction offer a variety of frameworks for understanding
human behavior (i.e., inferring intentions) in the control of a complex dynamic system (see Jones and
Mitchell, 1987, and Jones, 1988, for a review). Knowledge-based problem solving strategies are tools for
implementing and reasoning with the knowledge represented in the human-machine interaction model.

OFMspert combines a particular human-machine interaction model (the operator function model (OFM)

(Mirtchell, 1987)) and knowledge-based problem solving approach (the blackboard model of problem solv-.

ing (Nii, 1986)) to provide the understanding capability necessary for an effective operator’s associate
(Rubin, et al., 1987). In the next sections, the OFM and the blackboard model of problem solving are
described. Next, ACTIN (Actions Interpreter), the intent inferencing component of OFMspert, is discussed,
along with a detailed example of how ACTIN infers operator intentions dynamically. Finally, experimental

results that validate ACTIN’s intent inferencing ability are considered.

THE OPERATOR FUNCTION MODEL

The operator function mode! (OFM: [Mitchell, 1987) provides a flexible framework for represcating
operator functions in the control of a compiex dynamic system. The OFM represents how an onerator
might organize and coordinate system control functions. Mathematically, the OFM is a hierarchic-
heterarchic network of finite-state automata. Network nodes represent operator activities as operator func-
tions, subfunctions, tasks, and actions. Operator functions are organized hierarchically as subfunctions,

tasks, and actions. Each level in the network may be a heterarchy, i.e., a collection of activities that may be
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performed concurrently. Network arcs represent system triggering events or the results of operator actions
that initiate or terminate operator activities. In this way, the OFM accounts for coordination of multiple

activities and dynamic focus of attention.

Historically, the OFM is related to the discrete control modeling methodology (Miller, 1985;
Mitchell and Miller, 1986). The OFM is distinguished by its modeling of both manual and cognitive opera-
tor actions in the context of system triggering events. Manual actions are system reconfiguration com-
mands. Cognitive actions include information gathering and decisioﬁ making that are typically supported

by information requests.

The OFM is a prescriptive mode! of human performance in supervisory control. Given system

triggering events, it defines the functions, subfunctions, tasks, and actions on which the operator should
focus. Used predictively, the OFM generates expectations of likely operator actions in the context of
current system state. Used inferentially, the OFM defines likely operator functions, subfunctions, and tasks
that can be inferred based on operator actions and system state. Thus, the OFM for a particular domain
defines the knowledge needed to perform intent inferencing. What is needed next is a problem solving stra-

tegy to use this knowledge.

THE BLACKBOARD MODEL OF PROBLEM SOLVING

OFMspert’s intent inferencing component, called ACTIN (Actions Interpreter), uses the HASP
blackboard model of problem solving (Nii et al, 1982; Nii, 1986). The HASP blackboard is one of the few
artificial intelligence systems tha: explicitly addresses real-time problem solving in dynamic environments.

The blackboard model of problem solving consists of three components: the blackboard, knowiedge
sources, and blackboard control. The blackboard is a data structure on which the current best hypothesis of
the solution is maintained and modified. The hypothesis is represented hierarchically, at various levels of
abstraction, and evolves incrementally over time as new data become available or old data become
obsolete. Domain-specific knowledge is organized as a collection of independent knowledge sources.

Knowledge sources are responsible for posting and interpreting information on the blackboard. Blackboard
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control applies knowledge sources opportunistically; that is, in either a top-down or bottom-up manner,

depending on what is more appropriate in the current context.

The blackboard mode! of problem solving is compatible with the knowledge represented in the OFM.
Both models use a hierarchical representation. The blackboard knowledge sources provide a modularity
that naturally represents much of the domain knowledge contained in the OFM arcs. The opportunistic
control strategy offers the dynamic flexibility necessary for inferring intentions in real ime. ACTIN com-
bines the OFM representation of domain knowledge and the blackboard model of problem solving 10

dynamically construct and assess current operator intentions.

ACTIONS INTERPRETER (ACTIN)

ACTIN's blackboard represents operator intentions as a hierarchy of goals, plans, tasks, and actions
that correspond to the OFM’s hierarchy of functions, subfunctions, tasks, and actions. Goals are currently
instantiated functions, plans are currently instantiated subfunctions, and so on. In some respects, ACTIN is
a process model that uses the blackboard problem solving method to build a dynamic representation of

current operator intentions based on the OFM’s static knowledge (Wenger, 1987).

The general mechanism for the blackboard approach to intent inferencing is as follows. Given an
OFM, currently hypothesized goals, plans, and tasks (GPTs) or sometimes additional plans and tasks (PTs)
for an existing goa! are placed on the blackboard in response to system triggering events. The blackboard
Incorporates operatsr actions into the representation with opportunistic reasoning. Thus, actions can be
immediately interprzi2d as supporting one or more current goals, plans, and tasks: and goals, plans, and

tasks can be inferred on the basis of operator actions.

Construction knowledge sources are responsible for building the representation of goals, plans, tasks,
and actions. These knowledge sources can further be characterized as either model-driven or data-driven.
Model-driven knowledge sources are those that post GPT information on the blackboard in response to sys-
tem triggering events as defined by the OFM. Data-driven knowledge sources are those that post operator

actions and attempt to infer support for any current tasks on the blackboard. Data-driven knowledge



sources may also postulate GPT information on the basis of operator actions. Assessment knowledge
sources are responsibie for evaluating the extent 1o which operator actions support currently hypothesized
goals, plans, and tasks. Assessments are always made in the context of a particular goal or plan which

forms the context for possible advice or reminders.

In order to illustrate ACTIN’s dynamic intent inferencing, it is first necessary to describe the applica-
tion domain for which our OFMspert was built: the Georgia Tech Multisatellite Operations Control Center
(GT-MSOCC). After describing GT-MSOCC and its OFM, an example of ACTIN’s intent inferencing is

presented.

GT-MSOCC: APPLICATION DOMAIN

GT-MSOCC is a real time, interactive simulation .of MSOCC, a NASA ground control station for
near-earth satellites (Mitchell, 1987). MSOCC is a facility for capturing and processing data sent by satel-
lites (see Figure 1). GT-MSOCC is a research doﬁain designed to supi)on theoretical and empirical
research on human-computer interaction in the context of a complex dynamic system. It is a high fidelity
simulation of the operator interface to an actual NASA ground contro! system. For more detail, see

Mitchell, 1987.

GT-MSOCC operator activities are defined by the GT-MSOCC OFM. At the highest level of the
GT-MSOCC operator function model are major cperator functions and the system events that cause the
operator to transition among functions (see Figure 2). This level of description represents operator goals in
the contex: ¢f curren: svstem state. The arcs define system events that rigger a refocus of attention or the
addition of 2 runctuion to the current set of operator duties.

The default high-level function is to control current missions. This involves the subfunctions of
monitoring data transmission and hardware status, detection of data transmission problems, and compensa-
tion for failed or degraded equipment. Each subfunction is further defined by a collection of tasks, which in

turn are supported by operator actions (system reconfiguration commands or display requests).
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Figure 1. Multisatellite Operations Control Center (MSOCC)

System triggering events cause the operator to focus attention on other high-level functions. An
unscheduled support request causes the operator to shift to the "configure to meet support requests” func-
ton. An error message from the automatic scheduler causes the operator to transition to the function to
compensate for the automated schedule failure. A request to deconfigure a mission causes the operator to
shift 1o the function of deconfiguring a manual mission configuration. Finally, the operator may engage in
long-term planning in the absence of other system wriggering events. Upon the termination .of these other
funcuons, the operator resumes the default control of current missions function. Functions mayv be ter-

minated by their successful completion or the determination ¢hat they cannot be completed.

ACTIN’S INTENT INFERENCING WITH GT-MSOCC

In this section, a detailed example of ACTIN’s intent inferencing is provided in the context of GT-
MSOCC. Table 1 shows the organization of GT-MSOCC goals, plans, tasks, and actions, as defined by the

GT-MSOCC OFM. Given system triggering events, ACTIN’s model-driven knowledge sources post the
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Figure 2. GT-MSOCC Operator Functions
appropriate goal, plan, and task (GPT) structures on the blackboard. When operator actions occur,
ACTIN’s data-driven knowledge sources post actions on the blackboard and attempt to "connect” the
actions to tasks which they support. This "connection” between actions and tasks defines ACTIN’s intent
inferencing capability. The knowledge of appropriate inferences of intent is contained in a data structure
that matches actions to task types. Data-driven knowledge sources consult this structure to determine that
task type(s) that a current operator action can support. They then search the blackboard's task level of

abstraction for those types, and connect the action to all appropriate tasks.

To illustrate ACTIN’s dynamic construction of operator intentions, consider the following scenario
from GT-MSOCC. The scenario is described in terms of GT-MSOCC system events and operator actions,
which then cause activity on the blackboard. ACTIN’s intent inferencing results in statements written to a
logfile. In the accompanying figures, the current blackboard structure is shown, along with ACTIN’s infer-

ences of intent.

1). The PM mission is automatically configured. ACTIN’s model-driven knowledge sources post the

goal 1o control the current mission (CCM) for PM. This goal is comprised of two plans: to monitor data
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Table 1. GT-MSOCC Goals, Plans, Tasks, and Actions
Goals Plans Tasks Actions
Control current mission Monitor software (MSW) Check MOR (CMOR) telem
com Check endpoints (CEND)  rup/gw/vip/cms telem
Monitor hardware (MHW) Check hardware (CHW) -
Manual Configure Request Check system constraints (CSC) Check current
number of -
o missions (CCNM)
Check mission msocc sched, msn scheds
scheduie (CMS)
Check scheduled msocc sched,pending
number of
missions (CSNM)
Check mission requirements (CMR) Check mission msocce sched. msn scheds
template (CMT)
Identify candidate hardware (ICH)  Find current (FCUR) -
Find unscheduled (TUSC) equip scheds, avails
Answer question (ANQ) Execute answer(XAN) operalor answer
Execute configure (XCON) manual config. (MCON)
events
Compensate for Reconfigure (RCON) Find duration (FDUR) telem, pending
Schedule Faiiure Execute man. reconfig (MRCO),
: reconfigure(XRCO) events
CFSF For each
equipment;
Find current (FCUR) -
Find unscheduled (FUSC)  equip scheds, avails
—_— Manual Deconfigure Request (DCON) Execute man. deconfig(MDCO),
deconfigure (XDCO)} events
_— Troubleshoot (TBLS) Check endpoints (CEND) gw/rup/cmsvip telem
Check interior (CIN) nas/tac/ap/modian telem
—_— : Replace(MRPL or SRPL) Find duration (FDUR) telem, pending
Find current (FCUR) -
Find unscheduled (FUSC) equip scheds, avails
Execute replace(XRPL) replace (RPL)

transmission or software (MSW) and to monitor hardware status (MHW). Each plan is composed of one or
more tasks. The monitor software plan consists of two tasks: to check data flow at the MOR (CMOR) and
to check data flow at endpoint equipment (CEND). The monitor hardware plan consists of the single task
to check hardware status (CHW). This entire GPT structure defines the control of current mission function

prescribed by the OFM. When PM is configured, ACTIN’s knowledge sources retrieve the control of



current mission GPT structure, fili in mis.sion-speciﬁc information (e.g., the name of this particular mission
is PM), and post the structure on the blackboard. The resulting blackboard is shown in Figure 3a.

2). Another mission (Geographic Explorer, or GEO) is configured. In the same way the control of
current mission GPT was posted for PM, a control of current mission GPT for GEO is also posted. The
resulting blackboard is shown in Figure 3b.

3). The operator requests the main telemetry page ("telem”). ACTIN’s data-driven knowledge
sources determine that the current action type is "telem"” and that actions of this type potentially support the
tasks of checking the MOR (CMOR) and finding the duration (FDUR) of current missions. Upon examin-
ing the tasks level of the blackboard, the knowledge sources find that two eligible tasks are posted: the
CMOR tasks for PM and GEO. Thus, the "telem” action is posted and connected to the CMOR tasks. The
resulting blackboard is shown in Figure 3c.

4). The operator requests the gateway telemetry page ("GwTelem”). ACTIN’s data-driven knowledge

sources determine that the current action type is "GwTelem" and that actions of this type potentially

Gae> (o> Gend

Figure 3a. Blackboard after PM is configured.
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Figure 3b. Blackboard after GEO is configured.

@O @O

BESCS D

Telem is interpreted as supporting CMOR for PM, CMOR for GEO

Figure 3c. Blackboard after Telem page request.
support the tasks of checking the endpoint equipment (CEND) of current missions. Upon examining the

tasks level of the blackboard, the knowledge sources find that two eligible tasks are posted: the CEND
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tasks for PM and GEO. Thus, the "GwTelem" action is posted and connected to the CEND tasks. The

resulting blackboard is shown in Figure 3d.

S). One of the components used by PM experiences a hardware failure. The component in this exam-
ple is RUP2. Upon the occurrence of this triggering event, ACTIN’s model-driven knowledge sources post
a plan to replace the failed component, along with the four associated tasks of finding a currently available
replacement (FCUR), finding the duration of the mission (FDUR), finding an unscheduled replacement

(FUSC), and executing the replace command (XRPL). The resulting blacicboard is shown in Figure 3e.
6). The operator again requests the main telemetry page. This time ACTIN's knowledge sources
determine that this action can support three tasks on the blackboard: FDUR for RUP2 and CMOR for both

PM and GEO. The resulting blackboard is shown in Figure 3f.

7). The operator requests the schedule for RUP1 ("RuplSched”). ACTIN’s data-driven knowledge
sources determine that the current action type is "Rup1Sched” and that actions of this type potentially sup-

port the task of finding unscheduled equipment (FUSC) for RUP components. Upon examining the tasks

@@ @O
Cere X on Lol o X e
Ca e

GwTelem is interpreted as supporting CEND for PM, CEND for GEO

Figure 3d. Blackboard after GwTelem page request.



Figure 3e. Blackboard after RUP2 hardware failure.

Telem is interpreted as supporting CMOR for PM, CMOR for GEO, FDUR for RUP2

Figure 3f. Blackboard after Telem page request.
level of the blackboard, the knowledge sources find thai one eligible task is posted: the FUSC task for

I RUP2. Thus, the "RuplSched” action is posted and connected to the FUSC task associated with the RUP2
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replace plan. The resulting blackboard is shown in Figure 3g.

8). Finally, the operator requests the schedule for NASS. ACTIN’s data-driven knowledge sources
determine that this request potentially supports finding unscheduled NAS components (i.e., the FUSC task
associated with any NAS component). However, although a FUSC type task is posted, it is not associated
with a NAS type component. ACTIN is unable to interpret this request as supporting any cm'rcﬁt tasks.
Thus, the "Nas5Sched” request action is posted, but not connected to any current tasks. Figure 3h illustrates

the resulting blackboard.

Several characteristics of ACTIN’s interpretation algorithm are notable. First, actions are immedi-
ately connected to whatever appropriate tasks exist on the blackboard at the time the actions are posted.

Connection links are not inferred after the action is posted.
Another important feature is ACTIN’s property of maximal connectivity. That is, ACTIN interprets
actions in the broadest possible context, assuming that the operator is extracting the maximum amount of

information from the display pages requested. In the example above, ACTIN inferred that the second telem

Rup1Sched is interpreted as supporting FUSC for RUP2

Figure 3g. Blackboard after Rupl Schedule request.
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Figure 3h. Blackboard after NasS Schedule Request.
action supported all current CMOR tasks as well as thé FDUR task for RUP2. Thus, the operator is "given

the benefit of the doubt” in the evaluation of performance.

The evaluation of operator performance is performed by knowledge sources that assess the degree to
which operator actions support current tasks (and by extension, plans and goals). ACTIN schedules assess-
ments periodically in the context of particular goals or plans. In the example above, ACTION schedules
separate assessments for the control of current mission goals for PM and GEO, and the replace plan for
RUP2. Assessments note the number of supportng actions and the time at which those actions occurred.
The assessments for PM and GEO would note tha: the CMOR task is supported by two actions and the
CEND task is supported by one action. RUP2’s replace plan assessment would state that one action sup-
ports the FDUR task and one action supports the FUSC task. The results of these assessments are written
to a logfile.

To summarize, the proposed model for intent inferencing uses the OFM methodology to postulate

operator functions, subfunctions, and tasks on the basis of current system state and observed operator

actions. This mode] has been implemented using a blackboard architecture. This structure, of which the
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scenario described in this section is an example, defines the context for intent inferencing.

The OFM and its implementation in ACTIN is an example of "the middle ground” in theorv con-
struction in cognitive science (Miller, Polson, and Kintsch, 1984). The theory has well-defined structures
and processes to "support both the instantiation of the theory as an executable computer program and quali-
tative experimental studies of the theory” (Miller, Polson, and Kintsch, 1984, p. 13). In the next section the
validation of the proposed model is explored A two-stage framework for validation is proposed, and

experimental results are briefly discussed.

EXPERIMENTAL VALIDATION

Validation of intent inferencing assures that the system is correctly inferring the intentions of the
human operator. Within the context of the OFM structure of intendons, this means that the system infers
support for the same tasks (and by extension, plans and goals) as the human, given the same set of operator
actions. The "human” in this case can be a human domain expert performing a post hoc analysis, or the
human operator giving an (on-line) account of intentions. Thus, the proposed two-part framework for the
validation of intent inferencing is 1.) comparison of expert and OFMspert analyses; and 2.) comparison of

concurrent verbal protocols and OFMspert analysis (see Jones, 1988, for more detail).

The experimental validation of ACTIN’s intent inferencing was conducted in two studies. In Experi-
ment 1, a domain expert’s interpretations of operator data were compared to ACTIN’s interpretations of
those same actions on an action-by-action basis. In Experiment 2, verbal protocols were collected from
GT-MSOCC operators while they were conrolling GT-MSOCC. Statements of intentions for each action

were compared to ACTIN's interpretations.

The results of these studies are discussed in detail in Jones (1988). Overall, the results showed that
ACTIN’s intent inferencing ability compared favorably to inferences made by a domain expert and state-

ments from verbal reports.




CRIGINAL PAGE 1S
OF POOR QUALITY
16

ACKNOWLEDGEMENTS

This research was supported by NASA Goddard Space Flight Center Contract Number NASS-28575
(Karen Moe and Walt Truszkowski, technical monitors) and by NASA Ames Research Center Grant

Number NAG-413 (Dr. Everett Palmer, technical monitor), awarded to Dr. Christine M. Mitchell.

REFERENCES

Chambers, A. B. and Nagel, D. C., 1985, Pilots of the future: Human or computer? Communications of the
"ACM, 28,11, 1187-1199.

Cohen, A. and Feigenbaum, E. A., 1982, The Handbook of Artificial Inielligence. Reading, MA:
Addison-Wesley.

Jones, P. M., 1988, Constructing and validating a model-based operator’s associate for supervisory control.
Report No. 88-1, Center for Human-Machine Systems Research, School of Industrial and Systems
Engineering, Georgia Institute of Technology, Atlanta, GA.

Jones, P. M. and Miuchell, C. M., 1987, Operator modeling: Conceptual and methodological distinctions.
Proceedings of the 31st Annual Meeting of the Human Factors Society, 1, 31-35. Santa Monica,
CA: Human Factors Society.

Miller, J. R., Polson, P. G., and Kintsch, W., 1984, Problems of methodology in cognitive science. In W.
Kintsch, J. R. Miller, and P. G. Polson (Eds.), Method and tactics in cognitive science. Hillsdale,
NJ: Lawrence Erlbaum Associates.

Miller, R. A, 1985, A systems approach to modeling discrete control performance. In W. B. Rouse, (Ed.),
Advances in Man-Machine Systems Research, Vol. 2, 177-248. New York: JAI Press.

Mitchell, C. M., 1987, GT-MSOCC: a research domain for modeling human-computer interaction and aid-
ing decision making in supervisory control systems. JEEE Transactions on Sysiems, Man, and
Cybernetics, SMC-17, 553-572.

Mitchell, C. M. and Forren, M. G., 1987, Multimodal user input to supervisory control systems: Voice-
augmented keyboards. JEEE Transactions on Systems, Man, and Cybernetics, SMC-17, 594-607.

Mitchell, C. M. and Miller, R. A., 1986, A discrete control model of operator function: A methodology for
information display design. IEEE Transactions on Systems, Man, and Cybernetics, SMC-16, 343-
357. '

Mirtchell, C. M. and Saisi, D. L., 1987, Use of model-based qualitative icons and adaptive windows in
workstations for supervisory control systems. IEEE Transactions on Systems, Mar., and Cvybernet-
ics, SMC-17, 573-595.

Nii, H. P, Feigenbaum, E. A.. Anton. J. J., and Rockmore, A. J., 1982, Signal-to-symbol transformation:
HASP/SIAP case study. Heuristic Programming Project, Report No. HPP-82-6. Fleuristic Program-
ming Project, Stanford University, Stanford, CA.

Nii, H. P., 1986, Blackboard svstems. A/ Magazine, 7-2, 7-3.

Rasmussen, 1., 1986, Informatior processing and human-machine interaction: An approach to cognitive
engineering. New York: North-Holland.

Rouse, W. B., Geddes, N. D., and Curry, R. E., 1987, An architecture for intelligent interfaces: Outline of
an approach to supporting operators of complex systems. Human-Computer Interaction, 3.

Rubin, K. S, Jones, P. M. and Mitchell, C. M., 1987, OFMspert: Application of a blackboard architecture
to infer operator intentions in real time decision making. Report No. 87-6, Center for Human-
Machine Systems Research, School of Industrial and Systems Engineering, Georgia Institute of
Technology, Adanta, GA. Also IEEE Transactions on Systems, Man, and Cybernerics, 10 appear.

Schank, R. C. and Abelson, R. P., 1977, Scripts plars goals and understanding. Hillsdale, NI: Lawrence
Erlbaum Associates.



17

Sheridan, T. B. and Johannsen, G., 1976, Monitoring Behavior and Supervisory Control. New York: Ple-
num.

Wenger, E., 1987, Artficial intelligence and tutoring systems. Los Altos, CA: Morgan Kaufmann.

Wickens, C. D., 1984, Engineering Psychology and Human Performance. Columbus, OH: Charles Mermill.

Winograd, T., 1972, Understanding natural language. New York: Academic Press.

Woods, D. D., 1986, Cognitive technologies: The design of joint human-machine cognitive systems. The
Al Magazine, 86-92.



‘N89-20696
OFMTutor
An Operator Function Model Intelligent Tutoring System
Patricia M. Jones

ISYE 8706

8 November 1988




INTRODUCTION

This paper proposes the design, implementation, and evaluation of OFMTutor, an Operator Function
Model intelligent tutoring system. OFMTutor is intended to provide intelligent tutoring in the context of
complex dynamic systems for which an operator function model (OFM) (Mitchell, 1987) can be con-
structed. The human operator’s role in such complex, dynamic, and highly automated systems is that of a
supervisory controller whose primary responsibilities are routine monitoring and fine-tuning of system
parameters and occasional compensation for system abnormalities (Sheridan and Johannsen, 1976; Wick-

ens, 1984).

The ability of a supervisory controller to cope with abnormal or emergency sitnations can be severely
limited. Wickens (1984) cites several problems with supervisory control: an increased monitoring load; a
"false sense of security” whereby the operator trusts the automation to such an extent that any human inter-
vention or checking seems unnecessary; and "out-of-the-loop familiarity" that implies a reduced ability to

cope with non-routine situations.

An important question then becomes how to improve system performance and safety in supervisory
control. The answer is not to automate the human out of the system; today’s technology cannot match the
human’s ability to cope with uncertain and novel situations (Chambers and Nagel, 1985). Rather,

automated systems must support the human operator,

One potentially useful form of support is the use of intelligent tutoring systems to teach the operator
about the system and how to function within that system. In the next section, previous research on intelli-
gent tutoring systems (ITS) is considered. Then the proposed design for OFMTutor is presented, and an

experimental evaluation is described.

INTELLIGENT TUTORING SYSTEMS RESEARCH

Intclligent tutoring systems are usually described in terms of three modules: an expert module that
represents domain expertise; a student model that represents the student’s performance record and
presumed state of knowledge; and a tutorial module that structures the interaction betwecen the tutor and the

- P

N T



student (Fath et al., 1988; Park et al., 1987, Wenger, 1987). Wenger (1987) considers the interface to be a
fourth critical component for the successful implementation of a knowledge communication system. The
following discussion of ITS research is divided into these broad categories of domain expertise representa-
tions, student modeling, pedagogical strategies, and interface design. Particular attention is paid to efforts

that involve complex dynamic systems and/or complex problem solving tasks.

Domain Expertise

According to Wenger (1987), domain expertise forms the source of knowledge to be communicated
and the standard for evaluating performance. Thus, the teaching goal is explicitly represented as this
knowledge. The degree to which such domain expertise may be articulated is dependent upon the tran-
sparency of the expert model’s structure and its psychological plausibility. Thus, knowledge whose struc-
ture is transparent to the student and whose organization énd form are psychologically plausible is

knowledge that can be relatively easily communicated to the student.

The SOPHIE project involved a series of tutoring programs for electronics troubleshooting (Burton
et al., 1982; Wenger, 1987). The first version of SOPHIE (SOPHIE-I) demonstrates the efficiency and
robustness of an inference engine that uses multiple representations of domain knowledge: a simulation-
based mathematical model of a circuit; procedural knowledge, organized as a collection of specialists, to act
on the circuit model; and declarative knowledge organized as a semantic net of facts. SOPHIE-I was used
as a supplemental laboratory in electronics troubleshooting instruction. SOPHIE-II extends SOPHIE-I to
include an articulate troubleshooting expert to demonstrate strategies to the student. The emphasis is on
articulation of expertise in qualitative, causal terms. Finally, SOPHIE-III is meant to support learner-
centered activities, while providing powerful inference capabilities and supporting good explanations.
SOPHIE-III’s expettise is represented as two separate modules: a troubleshooting expert and an electronics

expert. The architecture supports flexible, humanlike reasoning.

Like SOPHIE, the Recovery Boiler Tutor (RBT) (Woolf, 1986) supports a "reactive lcaming cnviron-
ment" which includes a simulation of the system of interest (a kraft recovery boiler) and in which the stu-

dent is allowed to propose hypotheses that can be evaluated in real time. Also like SOPHIE, RBT's domain



expertise concems fault detection and diagnosis. The domain knowledge is represented as a knowledge
base of scenarios which describe preconditions, postconditions, and solutions for emergencies or operating

conditions.

The AHAB system represents the realization of a proposed ITS architecture for troubleshooting in
complex dynamic systems (Fath, 1987; Fath et al., 1988). AHAB works in conjunction with PEQUOD, a
marine steam powerplant simulation, to tutor students in troubleshooting strategies. AHAB’s domain
expertise (a "task model”) prescribes troubleshooting actions based on current system state and represents
psychologically plausible troubleshooting strategies (i.e., symptomatic and topographic search (Rasmussen,
1986)). The task model is structured as an opefator function model (OFM) (Mitchell, 1987), together with

representations of declarative and procedural knowledge.

AHAB’s OFM provides the richest, most efficient structure for domain expertise of all three systems
reviewed here. It accounts for the coordination of strategy and dynamic focus of attention based on current

system state. The OFM will be described in more detail in the section on the design of OFMTutor.

‘Wenger discusses several issues in the representation of domain expertise. The representation should
be complete; that is, the expertise should be a process model that has knowledge of the domain and also
metaknowledge about how to use it. A process model must be able to solve problems that the student is

expected to learn.

Domain knowledge also needs to be relevant to the student. To this end, the process of warranting
belief (i.e., justification of new knowledge with respect to previous knowledge and beliefs) is important. It
is crucial to motivate the concept to be taught with references to previous knowledge and be. ‘s held by the

student. This serves to justify new knowledge.

Finally, a critical distinction in domain knowledge is whether it is compiled or articulate. Compiled
knowledge is "automatic”; it is efficient and simple to use, but no longer possesses transparcncy and gen-
erality. In particular, compiled knowledge does not support the warranting process. Articulate knowledge,
on the other hand, is ablc to support warranting belief via organization in terms of decomposition into

primitives and configuration of primitives into a model and justification in tcrms of "first principles” (e.g.,



causality, structure, functionality, teleology) and integration.

Student Modeling

Intelligent con.lmunication requires understanding of the recipient (Wenger, 1987). Thus, an intelli-
gent tutoring system must possess some model of the student’s current state of knowledge. In particular, an
ITS uses student actions as data for interpretation and reconstruction of presumed states of knowledge.
This requires the explicit consideration of a model of the student. The student model is needed by the tutor

to guide the student’s problem solving and to organize the learning sequence (Wenger, 1987).

In general, student modeling employs the technique of "differential modeling” -- that is, a comparison
of expert and student performance and/or knowledge (Burton and Brown, 1982). Differential modeling
requires that the expert and student models have the same structure for unambiguous comparisons to occur.
Student modeling techniques may be broadly classified as overlay models or buggy models (Park et al.,
1987, Wenger, 1987). An overlay model assumes that the student’s knowledge is a subset of expert
knowledge; differences between the student and expert models are due to incompleteness of student
knowledge. An example of an overlay model is Goldstein’s genetic graph (Goldstein, 1982). Buggy
models explicitly capture misconceptions as a collection of "bugs" (with or without an accompanying
theory of the origin of these bugs); differences between the student and expert models are due to the
student’s "buggy” deviations (Burton, 1982; Johnson and Soloway, 1985). Buggy models are employed in

BUGGY and its variants (Burton, 1982) and PROUST (Johnson and Soloway, 1985).

Two particular student modeling techniques are relevant for our discussion. The first is the idea of
the "limited bug model” used in AHAB. AHAB’s student model is very similar in structure to the task
model, and thus the two can be compared via differential modeling in the spirit of an overlay modcl. How-
ever, AHAB also represcnts student errors in terms of common or important gencral types of errors. Thus,
errors arc not exhaustively enumcrated a priori, but broad categories of errors can be used 10 identify the

source of a difference between the student and task models.

The sccond important consideration is that of student intentions. By utilizing an explicit account of

plausible student intentions (i.e., goals and plans), pcrformance can be better understood and thus



diagnosed properly and remedied in context (Genesereth, 1982).

Plan recognition is a2 way of using information about the student’s actions in dealing with the
combinatorics in domains where the number of reasonable solutions and bugs is too large for
the expert difference technique to work effectively. ... In addition to helping pinpoint the
student’s misconception, studying his plan is advantageous in that it enables the tutor to offer

remediation in the context of the student’s problem and his approach to solving it. (p. 140)

Similarly, Johnson and Soloway (1987) argue that "knowledge of intentions makes it possible to identify
more bugs, as well as to understand their causes” (Johnson and Soloway, 1987, p. 50). Thus, it is desirable

to account for plausible student intentions explicitly in the design of a student model.

Pedagogical Strategies

Pedagogical strategy detines the organization, sequencing, and form of the student-tutor interaction;
it designates what to say and how and when to say it. Many intelligent tutoring systems employ the gnided
discovery or ¢oaching method in which the student "learns by doing" with the assistance of a non-intrusive
coach (Park et al., 1987; Burton and Brown, 1982; Wenger, 1987). The purpose of the coach is to "foster
the learning inherent in the activity itself by pointing out existing leaming opportunities and by transform-

ing failures into learning experiences” (Wenger, 1987, p. 124).

WEST is one of the earliest and most influential computer coaches. WEST assists students in play-
ing the game "How the WEST was Won" (Burton and Brown, 1982). WEST uses the "issues and exam-
ples” paradigm to find issucs where a student is weak (via differential modeling) and then to provide exam-
ples to illustrate better moves. The guiding principle behind such a pedagogical strategy is to make inter-
ventions both relevant and memorable (Wenger, 1987). WEST also employs a number of tutoring princi-
ples that govem its intervention capabilitics (e.g., "Never tutor on two consecutive moves”) (Burton and

Brown, 1982).



SOPHIE and RBT both provide a "reactive learning environment” in which students can "play” with
the simulation and observe the effects of their manipulations. STEAMER is an inspectable, interactive
simulation of a propuision plant that also allows students to manipulate system conditions and events (Hol-
Ian et al., 1987). Fath (1987; Fath et al., 1988) explicitly considers the simulation of a complex system as
part of the instructional media; the simulation is important in supporting students’ understanding of the sys-
tem (i.e., building of accurate mental models (Hoilan et al., 1987; Wenger, 1987)). Such simulations are
important pedagogically in that they can serve as a form of continuous explanation to the student (Wenger,

1987).

An important facet of pedagogy is diagnosis of student misconceptions. Diagnosis updates the stu-
dent model to reflect issues that need to be addressed in the interaction. Wenger (1987) distinguishes
between three levels of diagnostic activities: behavioral, epistemic, and individual. Behavioral diagnosis is
concerned with behavior and the product of behavior. It is further characterized as non-inferential
classification (an evaluation of student performance in terms of correctness) or inferential reconstruction
that is concerned with the problem solving process. The latter form of behavioral diagnosis is of concern
here; inferential reconstruction deals with the use of plans and goals in reconstruction of problem solving
behavior. Of especial importance are the PROUST and MACSYMA Advisor systems that explicitly
represent student intemijns. High-level goals are decomposed into plans and actions; diagnosis is a process
that altemates "between model-driven confirmation and data-driven recognition of plans and goals”

(Wenger, 1987, p. 374).

An important issue in instructional systems in general is principled curriculum design. While the so-
called "frame-based” computer-based instructional methods made an effort to take these considerations into
account, much of the research in intelligent tutoring systems does not make use of a theory of learning or
instruction (Lesgold, 1988; Park et al., 1987). However, some efforts have been made to consider curricula
in ITS rescarch. Wenger (1987) discusscs the concept of a bite-sized tutoring architecture (proposed by
Bonar and his colleagues) in which the system is organized around pedagogical issues called bites. Each

bite focuscs on a particular aspect of domain knowledge and also includes knowledge of its conceptual and



curricular relations to other bites, the student’s mastery of that bite’s subject matter, and the abilities to

diagnose, generate problems, and generate instructional interventions.

Lesgold (1988) points out that

Where conventional instruction has an explicit curriculum but fails to have an explicit and
complete representation of the knowledge that is to be taught, intelligent instructional systems
have tended to represent the target knowledge explicitly but not to represent explicitly that

body of knowledge that specifies the goal structure for instruction, the curriculum. (p. 117)

Lesgold argues that an intelligent tutor must represent domain knowledge, curriculum knowledge, and
knowledge of metaissues that affect instruction. Domain knowledge includes procedural and declarative
(i.e., conceptual) knowledge. Curriculum knowledge is represented as a lattice of goals that are decom-
posed progressively into subgoals, down to lessons that can be taught completely as a unit. This structure is
based upon Gagne’s (1971) learning hierarchy, in which the goal of instruction is pmgréssively refined
down to the level of individual lessons. The curriculum goal lattice is composed of a number of such goal
hierarchies, each of which corresponds to a particular viewpoint of domain knowledge. Finally, the metais-
sue layer relates to knowledge of student aptitude (e.g., "good ai math") and is defined as the topmost goal

nodes in the curriculum lattice (i.e., the origins of the various viewpoint hierarchies).

Lesgold emphasizes that the implicit idea of Gagne’s leaming hierarchy is that the whole is more
than the sum of its parts; higher levels in the hierarchy also provide "conceptual glue" that relates lower
level knowledge. Furthermore, he argues that the knowledge taught in a lesson depends upon the context in
which the lesson is taught. When a lesson is first taught, its "core content" (i.e., a coherent subset of
knowledge) should be presented, but if a lesson is remedial, it is crucial to teach the knowledge that links
the core content of the to-be-remediated lesson with the core content of the lesson whose failure produced

the need for remediation” (Lesgold, 1988, p. 134).

On Instructional Theory and Design



Gagne’s ideas have had a large influence on instructional design practices. He and his colleagues
have developed a well-specified approach to instructional design which can be summarized as follows (see

Briggs, 1977a):

1. Needs Assessment

This is a process of identifying instructional goals, ranking them by importance, identifying one or

more needs, and setting priorities for action.

2. Write Performance Objectives

Performance objectives translate goals into specific behavioral criteria for successful performance.
The proposed Gagne-Briggs model of performance objectives distinguishes between action, object, situa-
tion, tools and other constraints, and the capability to be learned. The action denotes what observable
behavior the student will perform (e.g, writing, running). The object denotes the resulting product of the
action (e.g., a poem, a pamtmg) The situation ciescribes the circumstances in which the student will per-
form (e.g., given the PEQUOD simulation with one introduced fault). Tools and other constraints describe
how the action wili be carried out (e.g., with a pencil) and performance limits (e.g., without the use of refer-
ences, within 30 minutes). The capability to be leamed is inferred from the action; Gagne and Briggs have
proposed a taxonomy of capabilities that distinguishes between intellectual skill, cognitive strategy, infor-

mation, motor skill, and attitude. This taxonomy is shown in Table 1.

Insert Table 1

about here

An example of a problem-solving performance objective is as follows (see Kibler and Bassctt, 1977). Sup-
pose the domain of interest is instructional design, and students are to be taught how to write performance

objectives. A rcasonable performance objective might be: Given a general statement of the scope and




sequence of topics for a high school course (sitnation), generate (learned capability: problem solving)
appropriate student objectives (object) by writing such objectives (action) within one week (tools, con-

straints, and special requirements).

3. Analyze Objectives

This is a kind of task analysis in which the taxonomy shown in Table 1 is used. The leaming task is
analyzed with respect to its essential and supporting prerequisites; such prerequisites define a learning
hierarchy. For example, an intellectual skill has as essential prerequisites simpler component intellectual
skills and as supporting prerequisites (i.e., those not essential for learning but that can be helpful) attitudes,

cognitive strategies, and verbal information.

4. Design the Instructional Strategy

The learning hierarchy provides a prescription of how the instruction should be sequenced; prere-
quisite skills should be taught first. In other words, instruction proceeds "bottom up". At a more fine-
grained level, Gagne disu'nguisﬁes between nine instructional events (or teaching steps): gain attention, tell
the student the objective, stimulate recall of prerequisites, present the stimulus material, provide guidance,
elicit the performance, provide feedback, assess performance, and enhance retention and transfer. Of par-

ticular interest are Gagne'’s suggested forms of guidance for leaming; these are reproduced in Table 2.

Insert Table 2

about here

5. Lesson Planning

The suggested steps in lesson planning are to identify the objective, list the desired instructional
events, sclect ideal media, sclect materials and activities, analyze materials for events they supply, and plan

other means for the remaining events (Briggs, 1977b).
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6. Formative Evaluation

Formative evaluation is the process of testing and revising instructional materials while they are still
being developed. Three suggested phases of formative evaluation are one-to-one, small group, and field

trial evaluations (Dick, 1977a).

6. Summative Evaluation

Summative evaluation is the process of collecting and interpreting data about the quality of a pro-
posed educational product. A suggested five-step approach to summative evaluation is to identify instruc-
tional objectives, identify the target population and select students from it, develop evaluation instruments
(i.e, objectives-referenced tests, attitude questionnaires, and cost data), document the instructional process,

and prepare the final report (Dick, 1977b).

This approach has been quite popular in the educational community; however, it is not without its critics.
Novak (1986) argues that Gagne’s model of learning (i.e., the leaming hierarchy) is founded on a stimulus-
response association. As such, this model, with its emphasis on "behavioral objectives” and suggested
bottom-up approach to instructional sequences, is an outgrowth of behaviorist psychology. Novak argues
for a constructivist, rather than a positivistic, view of epistemology. In other words, rather than an
exclusive concern with observable data, we should recognize that "humans construct knowledge using the
concepts, principles, and theories they have, and change their knowledge claims as new ideas and associated
methodologies lead to new constructions of how people and the universe operate” (Novak, 1986, p. 6).
Novak also emphasizes the importance of concepts; in fact, he states that "’concepts are what we think
with.” As we change our concepts and conceptual frameworks in positive ways, we may or may not change

our behavior, but the meaning of our experience changes" (Novak, 1986, p. 8).

Novak argucs that a model of human learning is essential for a theory of cducation. Rather than a
behaviorist modet of learning, he advocates the theory proposed by educational psychologist David Ausu-
bel. Ausubet contends that the single most important factor in lcarning is what the leamner already knows.

Effective instruction ascertains the leamner’s present state of knowledge and tcaches accordingly. Ausubel
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views knowledge as a cognitive structure: a hierarchical organization of concepts, where specific elements

of knowledge are subsumed under more general concepts.

Another important idea is that of concept differentiation: "As new experience is acquired and new
knowledge is related to concepts already in a person’s mind, these concepts become elaborated or altered,
and hence they can be related to a wider array of new information in subsequent leaming” (Novak, 1986, p.

25). Thus, a learner’s previous knowledge includes relevant concepts and the extent of their differentiation.

Ausubel distinguishes between rote and meaningful learning. Rote learning occurs when the new
material is not associated with any existing elements in the cognitive structure. Meaningful learning occurs
when new material is linked with subsuming concepts ("subsumers"). The new material is "stored in a
somewhat altered form (as a product of assimilation with the subsuming concept(s)) and modifies

(differentiates further) the subsumers to which it is linked” (Novak, 1986, p. 26).

Ausubel’s theory implies that "concept development proceeds best when the most general, most
inclusive elements of a concept are introduced first and then the concept is progressively differentiated in
terms of detail and specificity” (Novak, 1986, p. 86). This is in direct contradiction to Gagne’s prescription
of teaching "bottom up”. Ausubel’s theory is more persuasive, however, in that "top down" instruction
gives a context for learning, and, in Wenger’s terms, may serve to warrant belief.

Novak emphasizes the distinction between curriculum (issues) and instructional (teaching) issues.
This is similar to the separation of domain and tutorial knowledge that distinguishes the GUIDON system
(Clancey, 1987). Novak draws on Johnson’s model of curriculum design (Johnson, 1967), a simplified ver-

sion of which is shown in Figure 1.

Insert Figure 1

about here

It is shown that a curriculum devclopment system uses knowlcdge available from the culture in conjunction
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with structuring and selection criteria to produce a curriculum, The curriculum is an input to structured
planning, which also considers instrumental content and teaching behavior repertoire to produce an instruc-
tional plan. This plan is administered to learners; their performance is evaluated and relevant feedback is

provided to both curriculum and instructional development.

Novak relates Ausubel’s theory of leamning to Johnson’s model of curriculum and instructional
development in order to specify the nature of each module. Ausubel’s emphasis on concepts implies that
the selection criteria for knowledge should be to select major and minor concepts in the field of study. Thé
ordering criteria for knowledge should consider both progressive differentiation and integrative reconcilia-

tion:

Meaningful learning and progressive differentiation require the most general, most inclusive
concepts be presented early and subsequent information be provided to clarify meaning and
show connections to subordinate concepts....Superordinate learning and integrative reconcilia-
tion require that subordinate concepts be presented in a manner that allows association with
more inclusive concepts (superordinate concepts), and meanings of apparently disparate con-
éeprs will be clarified to show distinctions and relationships between subbrdinatc concepts

(integrative reconciliation), (Novak, 1986, pp. 137-138)

Ausubel’s theory implies that the curriculum’s "intended leamning outcomes” (ILOs) should be the
concepts to be leamed, with associated hierarchical and subordinate relationships. The selected exemplars
should be chosen such that "cognitive bridging" is provided (i.e., explicit association between new concepts
and the existing cognitive structure). Teaching approaches should to flexible and allow for "hands-on
experience” (or, in Piaget’s terms, experience with "concrete props”). Actual learning outcomes are a func-
tion of the "degree of overall cognitive structure differentiation” and "initial or developed relevant subsu-
mers in the learner’s cognitive structure” (Novak, 1986, p. 139). Evaluation can be examined in terms of
" rate or degree of transfer of lcarning. The rate of learing dcpends on the "quality of existing or developed

relevant subsumers, and motivation for lcaming. Transfer of learning to new problem solving situations
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will be a function of the degree of concept differentiation, superordinate subsumption, and integrative
reconciliation achieved.” (Novak, 1986, p. 139). The feedback to curriculum planning may imply the need
for "altenative sequences of concept presentation” or "better clarification of relationships between
concepts...and/or better description of salient aspects of the concept(s)” (Novak, 1986, p. 139). Finally, the
feedback to instruction may indicate the need to select better exemplars (i.e., select those more easily linked
10 existing cognitive structure), provide better pacing of instruction, or select a better instructional strategy

(e.g., one-on-one tutorial assistance when the leamers’ cognitive development is highly variable).

As will be described later, it is proposed that OFMTutor employ the coaching method of tutoring,
with intention-based diagnosis, a modified version of Lesgold’s architecture, and an emphasis on relevant,

meaningful concepts as argued by Ausubel and Novak.

Interface Design

The interface design is an important part of an intelligent tutoring system, for the student directly
experiences interaction with the interface. Two basic routes have been taken in the design of the interface:
one concemed with graphical, iconic representations; the other with (textual) dialogue management. Often,
graphical repfescmations are used in conjunction with guided-discovery learning or coached activities (e.g.,
STEAMER, IMTS, RBT), and dialogue systems employ a mixed-initiative dialogue style of interaction

(e.g., GUIDON).

Graphical Interfaces. In the domain of complex, dynamic systems, dynamic graphical representa-
tions of the system’s structure and function are useful. STEAMER's developers felt that a graphical inter-
face to a simulation would be valuable in that it would allow one to view and manipulate the system at a
number of different hierarchical Ievels. The graphical interface is also meant to provide a conceptually
faithful representation of the systcm, in order to foster the development of accurate mental models of the

system (Hollan et al., 1987),

The IMTS system provides a number of software tools that enable the development of simulation-
based techaical training (Towne ct al., 1988). IMTS supports both physical and functional views of device

components, in order to "promote the student’s ability to find, recognize, and manipulate physical clements
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in the real system, while maintaining a conception of the functional relationships that cannot be seen

directly in the real system" (Towne et al., 1988, p. 18).

RBT "provides tools for reasoning” about the operation of a kraft recovery boiler. These tools
include graphs that depict the relationship between various process parameters over time, meters that show
the system state at higher levels of abstraction (e.g., safety, efficiency, and reliability), and interactive
tutorial dialogues. The system also uses animated graphics to represent a mathematically and physically

accurate simulation of the boiler,

AHAB works with the PEQUOD simulation of a marine steam powerplant. PEQUOD uses a qualita-
tive approximation methodology (Govindaraj, 1987) that represents the system at various hierarchical lev-
els. System states are calculated quantitatively but gauge readings, etc. are represented qualitatively. The
student can inspect schematics of subsystems that provide information on causal flow and system state.
The student also interacts with menus and windows to determine feasible tests, make diagnoses, and gain

performance feedback.

GUIDON-WATCH is a graphic interface to NEOMYCIN, a medical consultation system.
GUIDON-WATCH allows the student to browse through the database and view reasoning processes for
diagnosis (Richer and Clancey, 1985). A number of windows provide information on current hypotheses,

causal relations among symptoms, a diagnostic task tree, current evidence, and positive findings.

The importance of a graphical interface is supported by research in human-machine interaction (cf
Norman and Draper, 1986). Some forms of interaction are facilitated with a conceptually natural and sim-
ple interface composed of iconic rcpresentations of objects rather than text. For training and tutoring in
domains associated with complex dynamic systems, graphical interfaces allow the student to conceptualize
system structure and function in a natural manner and to concentrate on learning rather than the intcraction

itself.

Toward a Theory of Discourse. When tutorial interactions are necessary, how should the wtor inter-
vene? How docs the tutor know when to intervene, what to say, and how to say it? The answer to these

questions involves a consideration of discourse, which is intimately ticd to the chosen pedagogical strategy.
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Burton and Brown (1982) provide specific principles of interaction for a tutorial coach; these are summar-

ized in Table 3.

Insert Table 3

about here

Such rules of thumb are useful guidelines but do not provide any principled theory of discourse con-
ventions in tutoring. Other researchers have focused on how human tutors interact with students (Woolf,
1987; Fox, 1987a and 1987b). Fox (1987a) argues that the tutorial interaction itself (¢.g., the way the stu-
dent responds to questions and the timing of the response) provides diagnostic information and advocates
that at least timing information can be utilized by an automated tutor. Thus, a lengthy pause between a
question posed by the tutor and the student’s response may indicate that the student encounted difficulty in
arriving at the m;wer. Fox also stresses that "repair is an essential factor in natural language interface
design” (Fox, 19875, p. i). In an analysis of face-to-face conversational tum-taking between a human tutor
and student, Fox notes that such turn-taking is very flexible, not primarily controlled by the tutor, and offers
a fundamental mechanism for repair that is missing from the same type of interaction over a teletype
machine. What is lost from the terminal-to-terminal interface is the "opportunity for the hearer to indicate
understanding or lack of understanding at the end of every unit; and the opportunity for the speaker to ini-
tiate correction on his/her own turn after it was sent” (Fox, 1987b, p. 5). Fox further notes that "certain
kinds of interruption are essential for maintaining mutual comprehension" and thus vital for repair (Fox,
19870, p. 8). Fox’s suggestions for dialogue management for an intelligent tutoring system are given in

Table 4.

Insert Table 4

about here
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Clancey (1982) argues that a case method tutor needs knowledge of dialogue patterns, domain
knowledge, and the communication situation in order to carry on a dialogue with a student. Clancey’s case
method tutor is GUIDON, a tutor that works in conjunction with MYCIN, an expert system for diagnosis of
infectious diseases. Augmented domain knowledge allows GUIDON to use metaknowledge to reason
about MYCIN’s rules and thus to use domain rules in a variety of ways. The communication situation is
defined by the student model (an overlay model that represents what topics or rules the student has and has
not yet demonstrated that he/she has learned) and the "focus record” that lists goals that the student has
inquired about. GUIDON uses "discourse procedures” invoked by tutoring rules to direct and focus the
case dialogue. The tutoring rules use knowledge of the communication situation as preconditions; thus, the
communication situation drives the tutorial interaction. The tutoring rules are used to select discourse pat-
terns (guide discussion of a domain rule, respond to a student hypothesis, and choose question formats),
choose domain knowledge (provide orientation for choosing new goals, measure. interestingness of domain

rules), and maintain the communication model (update the student model).

Woolf (1987) has investigated the machine representation of discourse conventions in tutoring. She
notes that discourse "is often described in qualitative terms along with the effect of the utterance on the
listener” (Woolf, 1987, p. 250). Discourse analysis often seems guided by implicit rules that are based on
the perception of qualitative states such as "what the student already knows". Woolf and her colleagues
have begun developing a theory of discourse based on the recognition of qualitative states such as "student
is confused” and "topic is generally known". As a first step towards this, Woolf defines conversational
move-classes "as groups of utterances that hav:, the same rhetorical effect” (Woolf, 1987, p. 253), such as
question-topic and providc-example. The choice of a move-class indicates the speaker’s intention in that
the listencr has particular expectations given a certain type of move. Woolf proposes tutoring maxims
based on Paul Grice's maxims of conversation: quality (be truthful), quantity (be bricf, yct complcte), rela-

tion (be rclevant) and manner (be clear and orderly) (Mura, 1983). Woolf's adaptions of Grice's maxims

. arc shown in Table §, and the tutorial maxims in relation to move-classes are shown in Table 6.
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Insert Tables Sand 6

about here

The move-classes are also defined with respect to their probable implications. These implications
define implicit assumptions that are "taken for granted” in natural conversation. For instance, the choice of
the question-topic class implies that the tutor "knows (or attempts to leamn) the student’s threshold of
knowledge™, "assumes the student can answer the question”, and "thinks the topic is important or is leamn-
able through the discourse” (Woolf, 1987, p. 256). Additional global implications are possible, based on
"extended reasoning about sequences of move-classes” (Woolf, 1987, p. 256). Such global implications
are assessments such as "student understands” and "topic was complete"; these are inherently uncertain and
form the system’s current best hypothesis of the student’s state of knowledge or current topic. Such reason-
ing with uncertainty requires the ability to entertain multiple, possibly conflicting hypotheses and to resolve

conflicts based on accumulating evidence,

Summary

This section has discussed previous research in intelligent tutoring systems, with emphasis on appli-
cations to domains associated with complex dynamic systems. Theories of education, learning, and
discourse have also been considered. The following considerations are especially relevant to the design ,of
OFMTutor: the simulation of a complex dynamic domain, a process model of expertise, intention-based
diagnosis and student modeling, the coaching/guided discovery paradigm, the importance of concepts in a
structured curriculum, a graphical dynamic interface to a complex dynamic simulation, and discourse

models that allow for repair.

OFMTUTOR DESIGN

The design philosophy bchind OFMTutor is similar to that of the RBT system (Woolf, 1986): the
tutor is a "partner and co-solver of problems with the operator” (Woolf, 1986, p. 11). This has much in

common with the approach of the "joint cornitive system” described by Woods (1986). The joint cognitive
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system paradigm proposes that the computer provide support for the operator, giving context-sensitive rem-

inders and suggestions, rather than dominate the interaction.

This approach-has several implications for the design of an intelligent tutoring system for supervisory
control of a complex dynamic system. First, the domain expertise and student models must be represented
as process models (Wenger, 1987) that explicitly capture procedural knowledge and decision making
behavior. Second, joint hypothesis formation and deci.sion making imply the need for a pedagogical stra-
tegy of coaching in a guided discovery (reactive learning) environment. Finally, the interface design must

support the explicit representation of domain expertise and an inspectable mode! of joint hypotheses.

In the next section I review the theoretical foundations of OFMTutor with a discussion of the opera-
tor function modeling methodology. Next, a blackboard architecture that implements the OFM for intent
inferencing is discussed. Finally, the design of OFMTutor is presented. The OFMTutor architecture is

based on that of OFMspert (Operator Function Model expert system) (Rubin et al., 1987).

The Operator Function Model

The OFM provides a flexible framework for representing operator functions in the control of a com-
plex dynamic system. The OFM represents how an operator might organize and coordinate system control
functions (Mitchell, 1987). Mathematically, the OFM is a hierarchic-heterarchic network of finite-state
automata. Network nodes represent operator activities as operator functions, subfunctions, tasks, and
actions. Operator functions are organized hierarchically as subfunctions, tasks, and actions. Each level in
the network may be a hetcrarchy, i.e., a collection of activities that may be performed concurrently, Net-
work arcs represent system triggering events or the results of operator actions that initiate or terminate
operator activitics. In this way, the OFM accounts for coordination of multiple activitics and dynamic

focus of attention. A gencric example of an OFM is illustrated in Figure 2.

Inscrt Figure 2

about herc
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Historically, the OFM is related to the discrete control modeling methodology (Miller, 1985;
Mitchell and Miller, i986). The OFM is disﬁnguiéhed by its modeling of both manual and cognitive opera-
tor actions in the context of system triggering events. Manual actions are system reconfiguration com-
mands, Cognitive actions include information gathering and decision making that are typically supported

by information requests.

The OFM is a prescriptive model of human performance in supervisory control. Given system
triggering events, it defines the functions, subfunctions, tasks, and actions on which the operator should
focus. Used as an expert model, the OFM generates expectations of likely operator actions in the context of
current system state. Used as a student model, the OFM defines likely operator functions, subfunctions,
and tasks that can be inferred based on operator actions and system state. This ability to infer intentions
dynamically is crucial for intention-based diagnosis, and also forms the core of the domain expertise and

student models.

Successful application of the OFM to intent inferencing in a supervisory control task (Rubin et al.,
1987; Jones, 1988; Jones et al., 1988) demonstrates that the OFM is a viable basis for determining operator
(student) intentions in the context of current system state and past operator actions. This application util-
ized a knowledge-based problem solving methodology known as the blackboard mode! of problem solving

(Nii, 1986). The next section describes this implementation.

The Blackboard Model of Problem Solving

The blackboard model of problem solving consists of three components: the blackboard, knowledge
sources, and blackboard control (Nii, 1986). The blackboard is a data structure on which the current best
hypothesis of the solution is maintained and modificd. The hypothesis is represented hicrarchically, at vari-
ous levels of abstraction, and evolves incrementally over time as new data become available or old data
become obsolete. Domain-specific knowledge is organized as a collection of independent knowledge

sources. Knowlcdge sources are responsible for posting and interpreting information on the blackboard,
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Blackboard control applies knowledge sources opportunistically; that is, in either a top-down or bottom-up

manner, depending on what is more appropriate in the current context.

The blackboard model of problem solving is compatible with the knowledge represented in the OFM.
Both models use a hierarchical representation. The blackboard knowledge sources provide a modularity
that naturally represents much of the domain knowledge contained in the OFM arcs. The opportunistic

control strategy offers the dynamic flexibility necessary for inferring intentions in real time.

Operator intentions may be represented as a hierarchy of goals, plans, tasks, and actions that
correspond to the OFM’s hierarchy of functions, subfunctions, tasks, and actions. Goals are currently
instantiated functions, plans are currently instantiated subfunctions, and so on. The general mechanism for
the blackboard approach to intent inferencing is as follows. Given an OFM, currently hypothesized goals,
plans, and tasks (GPTs) or sometimes additional plans and tasks (PTs) for an existing goal are placed on the
blackboard in response to system triggering events. Thq blackboard incorporates operator actions into the
representation with opportunistic reasoning. Thus, actions can be immediately interpreted as supporting
one or more current goals, plans, and tasks; and goals, plans, and tasks can be inferred on the basis of
operator actions. In general, actions are interpreted with a strategy of maximal connectivity; actions that
can support more than one current task are interpreted as supporting all such tasks. Figure 3 shows the pro-

posed blackboard model of intentions.

Insert Figure 3

about here

Other Modeling and Pedagogical Considerations

The OFM is not enough to define all the knowledge needed for tutoring. The OFM does not expli-
citly represent the system to be controlled; it specifies operator functions within that system. This level of

explanation is rcasonable for well-traincd operators but is insufficient for tutoring purposes. Like
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GUIDON, OFMTutor will have to be augmented with supporting domain knowledge. Based on Novak’s
theory of education, such supporting knowledge should be in the form of concepts whose subsuming rela-
tionships should be clearly explicated. The relevant concepts associated with a complex dynamic system
include the system’s purpose, function, and structure. In particular, these concepts can be described in
accordance with Rasmussen’s (1986) abstraction hierarchy. Thus, both knowledge of the system (the
abstraction hierarchy) and knowledge of operator functions (the OFM) correspond to a hierarchical arrange-
ment that suggests the course of "top down" instruction proposed by Novak. Furthermore, since knowledge
of the system is, in Gagne’s terms, an essential prerequisite for knowledge of how to control the system,
system concepts should be taught before operator function concepts. Figure 4 illustrates the abstraction

hierarchy.

Insert Figure 4

about here

Furthermore, the OFM does not represent errorful behavior. Thus, the inclusion of "buggy” GPT’s is
necessary as a "limited bug model” similar to AHAB’s. In this way, broad classes of misconceptions can
be diagnosed and remedied appropriately. In order to build representations of misconceptions, a thorough
cognitive task analysis of novice users is necessary. By careful observation of subjects interacting with the
system, as well as protocol and off-line analyses, one may be able to characterize misconceptions and their
manifestations in action patterns. Then the intelligent tutoring system can be given knowledge of particular

action sequences and probable underlying misconceptions associated with them.

The Representation of the Expert and Student

The combination of the OFM and blackboard model of problem solving dcfine a process modcl

Lt

(Wenger, 1987) that can be used to represent expertise and student knowledge. The "expert’s” goals, plans,

and tasks can be represented on one blackboard, and the student’s inferred intentions can be represented
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similarly on a separate blackboard. Differential modeling can easily assess the difference between the two
blackboards. If the student model is missing intentions that the expert has, a reminder or hint can be
employed to remedy this error of omission. If the student model includes some intentions not modeled on

the expert blackboard, this may signal a misconception to be corrected with the proper intervention.

The expert’s goals, plans, and tasks are inferred on the basis of current system state. Thus, inten-
tions are derived from the (normative) operator function model for GT-MSOCC. In contrast to the expert’s
model-derived intentions, the student’s goals, plans, and tasks are inferred based on student ac;ﬁons. The
student’s intentions may also be modeled with the "buggy” GPT’s described previously. Both representa-
tions exist in a component of OFMTutor known in general as the Blackboard. The Blackboard actually

consists of an expert and a student blackboard, where hypothesized intentions are posted and compared.

Supporting Domain Knowledge

Like AHAB and RBT, OFMTutor will require that students interact with a simulation of a complex
dynamic system. Unlike AHAB and RBT, OFMTutor is designed to exist on a computer separate from the
simulation itself. This distributed environment supports the clean separation of domain dynamics and
tutoring knowledge and strategy. Furthermore, the portability of the OFMTutor architecture is enhanced in
that it can, in theory, be placed "on top of" any complex dynamic system simulation for which an OFM can
be constructed. Philosophically, it can be argued that intelligent tutoring is but one point on a continuum of
intelligent aiding in general, and since our design philosophy of the operator’s associate dictates such a dis-
tributed environment (Rubin et al., 1987; Jones et al., 1988), it is natural that OFMTutor also requires such

an architecture.

The requircment of a distributed environment means that OFMTutor must have an explicit represen-
tation of current system state. This representation may be termed the Current Problem Space (CPS). The
CPS is nceded to give context for the modeling of ihtentions and for pedagogical interventions. Also, a
. representation of the current displays to the student is nccessary in order to infer what information is
currendy available to the student. This representation is called the Workstation description. The Worksta-

tion maps the names of display pages to their semantic information content.
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OFMTutor must also support knowledge of domain concepts. Beyond the procedural knowledge
defined in the OFM, an operator must have some grasp of the underlying principles of the system’s struc-
ture and ﬁmction. This includes knowledge of the system’s purpose, abstract function (e.g., flow of data),
function, and physical form. Such knowledge can be captured within the framework of Rasmussen’s
(1986) abstraction hierarchy. The abstraction hierarchy forms part of the additional knowledge needed for
tutoring. This additional knowledge also includes pedagogical knowledge and strategies and the limited
bug model goals, plans, and tasks. These enhancements to the knowledge in the OFM define the Enhanced

Normative Model (ENM).

Finally, the architecture requires a Communication Interface that communicates with the simulation
of the system and with the tutorial interface to the student. Information about system events and student
actions is sent from the simulation and the tutorial interface to OFMTutor. A scheduler, called the High
Level Cdntroller, manages the various events within OFMTutor. The complete architecture is shown in

Figure 5.

Insert Figure 5

about here

Pedagogical Strategy

OFMTutor’s pedagogical strategy is guided both by Ausubel’s and Gagne’s ideas; i.e., concepts and
essential prerequisites. Since a concept of the system is an essential prerequisite for learning operator func-
tions to control that system, the instructional process is divided into two broad scctions: one on concepts,
and one on control. The "conceptual” curriculum is presented top down and organized with respect to
Rasmussen’s abstraction hicrarchy. The student’s knowledge is assessed via on-line quizzes and question-

naires.
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When the student has mastered system concepts, control functions will be taught. Here, the student
will leamn procedures for controlling the system. This phase of instruction is organized top down with
respect to the operator function model. Also, while the first phase of instruction will take place solely in the
context of the tutor, the second "operational” phase is taught in the context of the system simulation. In this
phase, the tutorial strategy is one of guided discovery, in which the student explores the system and is given
non-intrusive assistance by a "coach.” The student has relatively greater control over the interaction here

than in the first phase.
Diagnosis occurs by differential modeling of the two blackboards as described earlier. However, the

tutor does not give explicit advice or warnings immediately when a discrepancy is noticed. It is important

to allow an opportunity for the student to "get back on track” independently.

Tutorial Interface

OFMTutor’s interface is a multiwindow environment that allows the student a fair degree of control
over the interaction. The student may collapse or open any windows desired at any point in time. In the

first phase of instruction, the tutorial interface consists of animated views of the system, text that describes

concepts, and multiple-choice and fill-in-the-blank quizzes.

During the second phase of instruction, the interface supports a graphical representation of joint
intentions; that is, a representation that explicitly shows the comparison of the expert and student model
blackboards. Supporting text windows include a list of expected commands, a list of all commands (so that

failures to remember syntax are minimized), and dynamically gencrated advice and suggestions.

OFMTUTOR EVALUATION

Park et al. (1987) asscrt that one mcthodological diflerence between computer-based instruction “nd
intclligent tutoring systems is that the former pay attention to evaluation procedurcs, and the latter do oL,
In this scction we examinc evaluation procedurcs from both instructional and industrial-organizational
points of vicw, with the aim of deriving uscful cvaluation procedures for an intelligent tutoring system such

as OFMTutor,




Traditional Instructional Evaluation

As discussed previously, formative and summative evaluation comprise part of the instructional

design process. Dick (1977a) describes formative evaluation:

Formative evaluation may be ... defined as a process of systematically trying out instructional
materials with learners in order to gather information and data which will be used to revise the
materials. The implication of the term formative’ is that the evaluation process occurs while
the materials are still being developed.

... The sole purpose of formative evaluation is to provide the instructional designer with as
much information as possible to revise and strengthen the product which is under development.

(pp. 311-312)

The first suggested phase of formative evaluation is one-to-one evaluation. A small representative
sample of the target student population (preferably three students -- one of below average ability, one of
average ability, and one of above average ability) works through a draft of the instructional materials
(including any tests) with the designer. Students give feedback both by their performance and comments to
the designer. The designer also asks specific questions in order to discover particular strengths and
weaknesses of the materials. This phase is much like a "pilot study” used in traditional experimental situa-
tions. The one-to-one phase also includes a review of the materials by a domain expert in order to insure
the accuracy of the content. The output from this phase is a set of comments and observations on any
difficulties encountered in the use of the materials. The instructional materials are revised with respect to

this output, and the revised materials are uscd in the second phase of formative evaluation.

The second phase of formative evaluation is a small-group evaluation. The purposcs of this phase arc
to evaluate the effectivencss of the first phase’s revisions, identify any remaining diflicultics, and begin the
dctermination of the feasibility of administering the materials in the field. Dick (1977a) recommends a
rcpresentative sample of between cight and 24 students for the small-group evaluation. The students take

tests and study the materials in a manncr similar to that to be uscd in the ficld. Qucstionnaircs arc also
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given, and any helpful comments are solicited as well. The output from the second phase of formative

evaluation includes comments, questionnaire data, test scores, and learming times.

The third phase of formative evaluation is field trial evaluation. The major purpose of this phase is to
"determine the administrative feasibility of using the instructional materials under normal classroom condi-
tions” (Dick, 1977a, p. 316), as well as to ascertain the effectiveness of the previous revisions. The most
critical component of this evaluation phase is that the maierials are used in the environment for which they
are ultimately intended. Dick (1977a) suggests that the sample size for field trial evaluation should be at

least 30 students.

Dick (1977a) notes that no guidelines exist for when to terminate formative evaluation; the decision
to terminate formative evaluation "is based almost entirely upon the specific circumstances surrounding the
development project” (p. 330). Typically, time requirements or funding are important factors. Designers
may also set statistical criteria to be met. For example, the military established an "80/80" criterion for for-
mative evaluation termination. This meant that when 80% of the students achieved 80% of the proposed

objectives, the formative evaluation process was judged complete.

In practice, formative evaluation is usually the last stage of the design process. However, very often
we are interested in comparing alternative instructional products. Summative evaluation is a process meant

to provide data needed this comparison proccss.

Dick (1977b) reviews several models of summative evaluation. One model, proposed by Gagne and
Briggs, has four components: support, aptitude, process, and outcome evaluation. Support evaluation
examines the instructional materials, the climate of the teaching environment, parcntal and peer attitudes,
and other factors that may affect learning. Aptitude evaluation, or the cvaluation of lcarner aptitude, is
important in that aptitude is significantly corrclated with eventual leaming outcomcs. Furthcmmore,
knowledge of the learner population helps define the gencralizability of the summative cvalution studics.
Process cvaluation refers to the documentation of instructional materials and procedures and the formative
evaluation process. Qutcome cvaluation refers to the evaluation and reporting of instructional objectives,

criteria for success, and results of product successes and failurcs.
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The basic process of summative evaluation, as described by Dick (1977b), consists of five steps:
identification of intended outcomes, identification of the target student population and experimental design,
development of the evaluation instruments, documentation of the instructional process, and preparation of
the final report. First, one identifies the relevant instructional goals and objectives. Next, one identifies a
representative sample of students. Depending on the availability and size of the sample, one has several
alternative experimental situations: comparisons between two experimental groups, comparison of one
group to norms for a standardized exam, or, in the worst case, to establish criteria for success and adminis-
ter the appropriate tests to the sample after the completion of their studies. The summative evaluation is
also responsible for developing evaluation instruments for data collection. These include means for assess-
ing leaming outcomes (e.g., objectives-referenced tests), attitudes about the instructional content and form
(e.g., questionnaires), and cost. The instructional process itself must be documented thoroughly, and a clear

final report prepared.

Training Program Evaluation

From an industrial-organizational psychology perspective, Landy and Trumbo (1980) review several
differént appi'oaches to the evalution of training programs. One approach distinguishes between internal
criteria (i.e., performance in the training situation) and external criteria (i.e., performance on the job).

Landy and Trumbo give examples of each:

Internal criteria include objective exams, questionnaires reflecting attitude changes by the
trainees, and the opinions of trainees, trainers, or others as to the effectiveness of the program.
Comparison of training methods or programs may use the number of hours of training required
to reach a common training performance level as an internal measure. A similar critcrion --
hours (days or wecks) to rcach standard production on the job after training -- would be an
external critcrion. Extemal criteria include measures of quantity or quality of production, time
to rcach production levels, accident records (for safety training) and other indications of job

behavior or training rcsults. (p. 296)
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Another approach distinguishes four levels of criteria: reaction, leaming, behavioral, and results cri-
teria. The former two correspond to internal criteria, and the latter two correspond to external criteria.
Reaction criteria are concemned with the trainees’ opinions of the program and typically consist of one or
more questionnaires. Leamning criteria include final exams, performance tests, and other measures of how
much was learned. Leamning criteria should refiect the objectives of the training program. Behavioral cri-
teria include performance measures on the job. Results criteria involves the assessment of the utility of
training with respect to organizational objectives (e.g., percent increase in job proficiency, percent decrease

in accidents or turnover).

Landy and Trumbo also discuss various experimental designs used in the assessment of training pro-
grams. Solomon’s proposed four group design is one of the most famous and most complete (see Figure 6).
The group of prime interest is the experimental group, which is given a pretest, undergoes training, and is
then given a posttest. The Control 1 group is given "sham training” during the training period to control for
the "Hawthorne effect” (i.e., the effect of perceived experimental manipulations on performance; the famed
Hawthome studies showed that workers’ productivity increased when they believed that working conditions
were altered for the better, when in fact the conditions were exactly the same! This phenomena is also
known as the "placebo effect”). The Control 2 group is needed to control for the effect of time (i.e., the
effect of waiting the duration of the training period before taking the posttest). Finally, the Control 3 group

is needed to control for the effect of giving a pretest.

Insert Figure 6

about here

Proposed OF MTutor Evaluation

Formative evaluation is a very important part of any educational project. Because OFMTutor is not

intended for simultancous use by a classroom of students, it is proposed that the onc-on-one and small
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group evaluations are sufficient for this purpose. The focus of summative evaluation will be on students
trained with OFMTutor as compared to those who read over a training manual and operated the systcm

untutored.

Academic research projects typically do not have the opportunity to work with real operators of com-
plex dynamic systems. The OFMTutor evaluation will focus on internal criteria; specifically, reaction

(questionnaire) and behavioral (performance) criteria.
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Functional Purpose

Production flow model
System objectives
Constraints

Abstract Function
Causal structure
Flow topology
Generalized Function

"Standard" functions:
Feedback loops
Heat transfer

Physical Function

Electrical,
mechanical,
chemical processes

Physical Form

Physical appearance
Material and form

Figure 4. The abstraction hierarchy.

<— Purpose basis; reasons for proper function

Physical basis; causes of malfunction —

Adapted from Rasmussen, 1986, p. 15.
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Group Before = Training Period After

Experimental Test Train Test
Control 1 Test Placebo activity Test
Control 2 Test No train Test
Control 3 No test No train Test

Figure 6. Four-group experimental design proposed by
Solomon. From Landy and Trumbo, 1980, p. 300.




Table 1.

Taxonomy of capabilities and actions.
Adapted from Briggs, 1977, p. 69.

Capability

Action

Example

Intellectual Skill
Discriminates
Concrete Concept
Defined Concept
Rule

Problem Solving

Cognitive Strategy

Information

Motor Skill

Attitude

Discriminates
Identifies
Classifies
Demonstrates

Generates

Originates

States

Executes

Chooses

Distinguishes sounds

Names computer components
Classifies using definition
Solves linear equations

Synthesizes rules to generate
solution

Applies model of diffusion to
originate solution to
reduction of air pollution

States current events

Drives a car_

Chooses to share toys




Table 2. Suggested guidance for particular learning

outcomes. Adapted from Gagne, 1977, p. 211.

Learning Outcome

Suggested Guidance

Discrimination

Concrete Concepts

Defined Concepts

Rules

Problem Solving

Cognitive Strategies
Names and Labels
Facts

Organized Knowledge

Motor Skills

Attitudes

Point out distinctive features of
objects to be discriminated

Gives cues to identifying attributes

Present component concepts in
proper sequence

Show how component concepts
make up the rule

Provide minimum cues needed to
select and apply rules

Provide only indirect cues
Provide coes or memory bridges
Provide meaningful context

Provide prompting in the context
of the organizational framework

Stimulate recall of sequence of acts;
provide practice with feedback

Show human model behavior and
how reinforced




Table 3. Some principles of interaction for a coach.
Adapted from Burton and Brown, 1982,

Principle 1: Before giving advice, be sure that the issue is one in
which the student is weak.

Principle 2: When illustrating an issue, use an example (alternative action)
that is dramatically superior to the action taken by the student.

Principle 3: After giving the student advice, allow an opportunity for
redoing the action.

Principle 4: If a student is close to making a serious mistake, interrupt
and tutor only with advice that will prevent that mistake.

Principle 5: Do not tutor on two consecutive actions.
Principle 6: Allow the student to explore before tutoring.

Principle 7: Praise the student when appropriate.

Principle 10: If a student asks for help, provide several levels of hints.

Principle 12: Be forgiving of possibly careless errors.




Table 4. Fox's suggestions for dialogue management.
Adapted from Fox, 1987b, p. 12.

Turn-taking should not be an on-off option. The interface
must allow for each party to participate as they see fit.

It is especially important that during a turn, the other
party have the ability to show understanding, initiate
repair, etc., at the end of every conversational unit.

The turn-taking mechanism must provide flexibility in
turn length.

Correction of the student, or initiation of such correction,
should be withheld until the student has had an opportunity
to self-correct, or initiate self-correction.




Table 5. Woolf's adaptions of Gricean maxims for discourse.
Adapted from Woolf, 1987, p. 254.

Quality Be committed and interested in student's knowledge.
Be supportive and cooperative.
Do not take the role of "antagonist”

Quantity Be specific and concise.
Use a minimum of attributes to describe a known concept.

Relation Be relevant.
Find the student's threshold of knowledge.
Bring up new topics and viewpoints as appropriate.

Manner Be in control.
Allow both the student and the context to determine the topic.




Table 6. Tutoring maxims supported by conversational
move-classes. From Woolf, 1987, p. 255.

Be

Be

Be

Be

Be

Cooperative
Work with student

Committed

Show interest

Support student

Relevant
Find student's
threshold
Teach at
threshold

Organized

Structure domain

Complete
information

in Control

Strictly guide
discoure

Explain, summarize, review or repeat,
and clearly terminate topics.
Release control of dialogue.

Acknowledge answer.
Explain topics.

Outline, introduce topics.

Question student.
Evaluate student hypotheses.
Propose and verify misconceptions.

Provide analogy examples.
Summarize topic.

Outline, introduce,
terminate, review topics.

Clearly terminate topics.
Teach subtopics and attributes after topic.
Teach subgoals after goal.

Introduce, describe topic.
Question student.
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Intniduction

The purpose of this paper is to provide an overview of the research in
the field of intelligent tutorial systems (ITS). More specifically, the various
approaches in the design and implementation of ITS will be examined and
discussed in the context of problem solving in an environment of a complex
dynamic system (CDS). Although there have been several execellent
sources of discussion on the work in ITS (Sleeman and Brown, 1982;
Wenger, 1987; Psotka et. al., 1988), the motivation for the paper stems from
the need to consolidate the findings in the research to a specific domain of
interest. In the Center for Human-Machine Systems Research at the
Georgia Institute of Technology, one of our interest and focus of research is
the application of ITS to complex dynamic systems.

Several relevant topics will serve as the background to the actual
study on the numerous ITS. First, issues pertaining to a CDS will be
considered. Next, the nature of human problem solving will be discussed,
especially in light of a CDS. Then, an overview of the architecture of an
ITS will be provided as the basis for the in depth examination of various
systems. Finally, the implications for the design and evaluation of an ITS
will be discussed along with some concluding remarks and thoughts.

Complex Dynamic Systems

With the advancement of computer technology, the trend towards
more complex systems has posed immediate challenges to the field of
human-machine interactions due to the changing role of an operator in his
work environment. Rasmussen (1986) has cautioned that automation
made possible in these systems do not render the human obselete, rather,
only the previous responsibility of the human operator in low level system
controls have now been replaced. In fact, Wickens (1984) points out three
objectives of automation. It allows the execution of functions in a system
. that an operator cannot perform due to inherent human limitations. Also,
automation may take over functions that do not involve the best of human
capabilities or are within human limitations but are too taxing. Instead of
totally taking over, another objective of automation may be to provide
assistance to the operator in achieving the above functions .

An operator's new role as a consequence of automation, has
generally been discussed under the term supervisory control. According to
Sheridan (1976) "the supervisory control paradigm applies to situations
where a person allocates his attention among various graphical or
alphanumeric displays and intermittently communicates new programs to
a computer which itself is in continuous direct control of a physical
process." An operator engaged in supervisory control (thus, he is the
supervisory controller) must deal with multi-task, multi-goal and multi-
person environments (Baron, 1984). The various activities of a supervisory
controller have been characterized in different but consistent ways.




Sheridan (1984) considers the planning, teaching, monitoring, intervening
and learning modes of a supervisory control task. Wickens (1984) discusses
the control versus diagnostic nature of the operator's task. Baron (1984)
catagorizes the activities into planning, monitoring, situation assessment,
decision-making, control and communication. Salvendy (1984) breaks
down the task into monitor, control, interpret, plan and diagnose. Yet
another simple dichotomy of a supervisory control task is that of monitoring
versus troubleshooting. Generally speaking, these activities focus on the
cognitive behavior instead of the psychomotor performance of the operator.

These tasks imply requirements at a level not considered before
(Rasmussen, 1986). For example, an operator must be trained differently in
order to meet the demands of his new tasks. An operator must possess
knowledge and understanding about the system at a sufficient depth in
order to handle both normal and abnormal situations. Moreover, with
automation comes a new set of problems (Wickens, 1984). An operator has
to deal with an increased monitoring load in face of a more complex system
that now have many additional interacting components. On the other
hand, an operator may exhibit too much trust in the automated
subsystems, resulting in a false sense of security that in turn affects his job
performance. There is also the potential problem of "out-of-the-loop
familiarity". This problem arises when an operator is taken out of the
normal control-loop replaced by automation, and thus interacting less with
the system and becoming less familiar with system states. Consequently,
the operator may be less able to handle system trouble. Although
automation elimates some low-level human error, it also introduces other
high-level errors associated with an operator's job. Finally, many tasks
that previously involve the cooperation of two human operators may now be
replaced by a less personal operator-machine team.

How is a CDS distinguishable from other systems? Baron (1984) cited

the following features for a system that require supervisory control:

- the system is very high-tech, large scale, expensive and risky in nature

- the system involves many complex and dynamic processes with many
controllable outputs

- the system has many subsystems

- many but not all aspects of the system are automated

- manually controllable variables have slow response, in contrast to
automatically controlled and rapid changing variables

- the demands on the system is driven by events

- there is a need to communicate among operators and with other system
units

- an operator at times have to follow a predetermined set of instructions
during some predictable situations.

A lot of work has been done to model the human supervisory
controller (Sheridan, 1984; Baron, 1984; Rouse ? etc). In addition,
Rasmussen (1986) has recently provided a valuable framework for
understanding and designing supervisory control systems. The next




section discusses a framework for studying the human problem solving
behavior in a CDS.

Problem Solving Strategies and Models

Human problem solving has been the subject for research in many
aspects of human-machine systems. With respect to a CDS, the tasks of a
supervisory controller concern that of solving problems in various
situations. Much of the research in this area has focussed on the
identification of the different strategies that an operator used in problem :
solving. Salvendy (1984) cited eleven strategies identified in the literature. ‘
A brief discussion of each method is given below. |

** NEED TO FIND DEFINITIONS

Backward search (Simon and Simon, 1978) ...
means-end analysis ...
and hill-climbing...(Newell, Shaw and Simon, 1960),
scan-and-search (Simon and Newell, 1971),...
progressive deepening (DeGroot, 1965) ...
and symptomatic search (Rasmussen, 1981; Wortman, 1971) ...

Application of examples (Anderson, 1981) refers to our ability to solve
a new problem by referring to an example of an already solved problem.
Solving problem by analogy (Mayer, 1981; Gentner and Gentner, 1983;
Rumelhart and Norman, 1981; Carroll et al, 1981) involves using solutions
in a familiar domain to solve a problem in the new domain. There are
some problems that are solved by mental simulation (Hollan et al, 1980).
This means that we envision in our mind a scenario surrounding a fact or
a problem which may or may not exist. When the problem solving
situation is that of fault diagnosis, Rasmussen (1981) points out that an
operator may use a strategy called topographic search. In this situation,
the operator has a mental model of the normal functions of the system
which is mapped against a problem to determine where a system function
may have failed. Finally, Rasmussen (1981) also noted three general types
of problem solving behavior: skill-, rule- and knowledge-based
performance. Skill-based behavior are sensorimotor type performance that
is very automatic. Rule-based behavior follows some prescribed procedure
in solving a problem. For complex and/or unfamiliar problems, an
operator has a goal in mind and plans his actions to achieve the goal based
on his model of the environment surrounding the problem. This is
knowledge-base behavior. )

In the study on human problem solving in fault diagnosis tasks,
several models were proposed (Rouse and Hunt, 1984). These models have
both prescriptive and predictive value in an attempt to understand the
nature of human problem solving. First, models of complexity suggest that
measures of complexity should take into account both the problem and
problem solver. Second, the theory of fuzzy sets may be used to model the



decision-making component in a problem which involves more than yes/no
answers. Rouse and Hunt also proposed a rule-based model where an
operator is modelled to solve a problem based on a set of situation-action
heuristics. Next, a fuzzy rule-based model accounts for problem solving
with highly context-sensitive rules. Lastly, a overall model considers
problem solving to consist of three levels of behavior: recognition and
classification of the problem situation, planning towards a solution to the
problem, and execution and monitoring of the planned actions.

Complexity in Problem Solving

In the previous section, problem solving was discussed from a
prescriptive point of view. The question remains as to what is it that makes
problem solving complex? Woods' (1988) approach to the psychology of
human behavior in complex problems is especially relevant to our interest
in ITS. The reason is that his particular approach provides us with
insights to determining the goals of an ITS -- what do we want the ITS to
teach an operator in a complex dynamic system. The questions that Woods
addressed include: what is complexity? how can we map the inherent
complexities of particular worlds? what cognitive demands does a world
impose on problem solvers? The rest of this section summarizes Woods'
discussions and "answers" to these questions.

Complexity is not an entity by itself, it is a characteristic of a
situation. Problem solving situations where complexity becomes an issue
can be thought of as interactions between three components. First, there is
the world or domain of interest to be acted on because of the problem. Next,
there are one of more agents acting on the world in an attempt to solve the
problem, in other words, the problem solver(s) and finally, the external
representation of the world available and perceived by the agent(s).

Problem solving situations become complex if the inherent characteristics
of the world impose on the agent(s) cognitive demands that affect the
adequate performance in various situations.

From the perspective of the world, Woods defines four dimensions of
complexity that contribute to the cognitive demands of that world. First, a
world can be characterized by its dynamism; this include how event-driven
is the world and how much do various tasks compete over time. The
number of parts and the extent to which these parts interconnect and
interact in a domain provide the second dimension of complexity. A world
is also characterized by its level of uncertainty in the data that describes the
state of the world. Finally, the amount of risk involved in a world is the
fourth dimension of complexity. Thus, every domain or system can be
analyzed along these dimensions. With respect to the earlier discussion on
complex dynamic systems, it is observed that the four dimensions are
consistent with the previous characterization of CDS. In general, a CDS is
a world that is very dynamic in nature, has many interconnecting and
interacting parts, and involves some degree of uncertainty and risk.




So what is the impact of such a world on the cognitive demands and
situations that the problem solver(s) will have to face? That is, a world that
is defined relatively high on all the four dimensions above? The rest of the
discussion will focus on the consequences of each dimension of domain
complexity on the problem solving environment confronted by the agent(s).

In a dynamic and event-driven world, problem solving extends over
time and solution to a problem may be long term and changing. Moreover,
problems are interrelated: the plan(s) of actions to one problem influence
the state or solution to other problems. New events or disturbances may
occur at any time to affect a problem and/or how it is being solved.
Consequently, a problem solver must have the cognitive skills to cope with
the above situations. A dynamic world demands that a problem solver
must be adaptive in two major ways. First, the problem solver must be able
to make predictions about potential possibilities of how the system may
behave. Second, the problem solver must be sensitive to the effects of new
events or disturbances and be responsive to these effects in terms of his
understanding of the world and his plans towards a problem solution.

To suport these skills, the problem solver must possess knowledge about the
world, its different states of behavior and its potential changes between
states.

When a domain of interest is characterized by many interacting
parts, there are several aspects that contribute to the complexity of the
problem solving environment. If a problem solver is faced with a system
with a large number of parts, he must learn to manage his time among
various tasks that involve different parts. The problem of divided attention
is intensified when the domain is also dynamic; the problem solver needs
good prospective memory that enables him to come back to a task at a later
time. However, if the parts in a system are intricate objects by themselves,
it becomes very important for the problem solver to have a good
understanding of the workings of these parts. In fact, a complex part is a
system in itself and serves as a subsystem to the larger, global system.

When numerous components of the domain are extensively
interconnected, several consequences are inevitable. First, actions carried
out by the system operator to attain a particular effect may produce
undesirable side effects. Similarly, errors and faults can propagate within
various parts in the system. Also, such a world is a prime candidate for
situations with conflicting and competing goals. In order to perform
effectively the reasoning involved in such an environment, the problem
solver must have knowledge about how different parts interrelate, affect
and constraint each other in achieving different goal states. When faced
with a situation with multiple faults, a cognitive demand on a problem
solver is that of problem formulation. Essentially, the problem solver must
be able make judgements about the problem to focus on based on his
assessment of the situation and his knowledge about the system and its
components. Another cognitive skill that a problem solver should possess



is disturbance management, particularly when the domain is also dynamic
in nature. This skill helps the problem solver deal with the effects of the
disturbance(s) at the moment and correct the crisis in the long run. Yet
another cognitive demand on the problem solver involves diagnostic
situations. The problem solver must have sufficient diagnostic skills to
avoid errors such as fixation of a single explanation to account for the state
of the world, treatment of interrelated problems as independent and
oversimplification of the interconnectedness that exists among the various
subsystems of the world.

When the domain is high on the uncertainty dimension of
complexity, data available to the operator may be unreliable and that a
given datum may be evidence to more than one part or state of the world.

As a consequence of the former situation, a problem solver must have
sufficient inference abilities to collect and integrate the erroneous data in
order to explain a particular state of the world. To cope with the latter
situation, the operator must have good reasoning skills to correctly map the
evidence from the data to the state(s) these data testify to. Thus, the
prerequisites to these skills include the problem solver's adequate
knowledge on the various mappings of evidence to state(s). If uncertainty is
coupled with dynamism, the task of the operator to collect evidence is
compounded by two factors. First, not all data about the state of the
environment are accessible at a given time. Second, the operator needs to
weight the potential benefit of the information to be acquired with the cost or
effort in the acquisition process. As a result, the problem solver needs to
know different methods for collecting data; that is, he must know when and
where to look for data. (** mention about monitoring aspect of the
supervisory controller **) He must respond to and check for system events
that unfold over time for evidence of a state of the system. Moreover, he
must have adequate knowledge about the states of the system to initiate
actions that support evidence gathering. In general, the cognitive demand
to cope with large amount of data and information is part of problem
formulation, where the problem solver must have the ability to discriminate
and attend to relevant data in order to arrive at a solution. Correct
utilization of the evidence surrounding an incident will avoid the potential
of solving the wrong problem.

Finally, when the world is complicated by the presence of risk, the
problem solver, in general, is constantly making decisions that takes into
account the cost of a particular choice of action(s) to the overall state of the
world. In addition, the problem solver must be concerned with not just
expected and common situations, but infrequent situations with damaging
results to the system.

In the final analysis, Woods emphasizes the importance of the above
approach in the understanding the complexity of a problem solving world.
The various demands and situations have strong implications on the other
two elements of a problem solving situation, namely, the representation(s)
of the world to the problem-solving agent(s) and the cognitive processing



capabilities of the agent(s). The breakdown on the different cognitive
demands and situations also provide the basis for understanding the
effectiveness and appropriateness of the numerous problem solving
strategies that were disscussed previously. In accordance to theme of this
paper, a global and ideal goal of an ITS designed for a complex dynamic
system is to teach an operator all the cognitive skills that he requires to cope
with the various cognitive demands and situations that arised due to
complexity of the domain. The ITS should also instill into the operator all
the knowledge about the system that he will need to support the skills.
Questions such as how these skills is taught, and how much of the
knowledge should be or can be taught explicitly are yet to be explored and
answered.

Architecture of an Intelligent Tutorial System

* basic elements are domain expertise, student model, pedagogical
expertise and interface (Wenger, 1987)

* similar breakdown by Fath (1987): task model, student model and
instructional module. Interface is part of simulation.

*** according to Wenger
** domain expertise

* functions

- has two functions: as a source of knowledge and a standard for evaluating
the student's performance

- as a standard, must be able to generate multiple solutions to a problem

- as a source of knowledge, there is a trade off between representing
knowledge of expertise as a curriculum (static) versus as a model
(dynamic)

* aspects of communicability
- domain knowledge includes pieces of information that are specifically
used for instructional purposes (the learning process)
- issue of transparency of the expert module: how inspectable and
interpretable are the reasoning steps to the final results
- issue of psychological plausibility of the expert module: how similar

is the expert module's performance as compared to the human's.
- choice of viewpoint of the domain to be taken by the expert module should
match that of the student. this is a limitation as compared to human
expert's adaptability to various student's viewpoints.

** student model



* information: how accurate and well covered is the information contained

in the student model

- information to interpret a student's behavior

- information to determine the knowledge state of the student based on the

interpretation of his action

;1 explicit representation of the misconceptions a student may have about the
omain

- information to explain how these misconceptions may have come about

" * representation: language of representation must accomodate for incorrect

knowledge of the student. language for expertise is thus not sufficient.

- neutral primitives: granular enough to account for both correct and
incorrect knowledge in domain. language itself does not carry
"correctness". _

- error primitives: enumerative approach-- information about errors and
misconceptions for a particular domain of students empirically collected
and treated as primitives of the language.

- language is such that the student model should be runnable: model can
generate predictions about the behavior of a student in a particular context.

* diaglnostic process: accounting for data to form and update student

model;

involves formulation and evaluation of competing hypotheses.

- assignment of credit and blame: intrepretation of actions may be top-down

gr bottom up. search for the student model may be model-driven or data-
riven.

- diagnostic process should be robust to noise from three sources: student

model is an approximation of the actual student; students are never

perfectly consistent in their actions; learning factor may alter the truth

about the knowledge state of a student.

- the diagnostic process may be active during a session by taking over a

session and requiring the student to do stuff for diagnostic purpose. or the

process may be passive; it observes and analyzes the student's action

silently in the background. the process may be a mixed too.

- diagnosis may be interactive in nature if a student is involved in

explaining his own behavior (but people are not good at doing that) or may

be inferential where a student is excluded totally in the diagnostic process.

a mix may be prefered.

** pedagogical expertise: knowledge about how to communicate knowledge
* didactic process

- represent pedagogical knowledge as rules versus principles
- global decisions affect the sequencing of instructional episodes



- local decisions affect the "when, what and how" of intervention. also
includes decisions on guidance in performance, explanations of
phenomena and remediation.

* degree of control

- monitor student's actions, but system never takes over

- mixed-intiative: control shared by both student and system

- guided-discovery learning or coached activities: student is in full control

** interface: final form of communication

* function

- interface should have conversational capabilitilies between the student
and the system

- form of communication may involve language processing

- more popular form due to advanced technology is the use of computer
graphics in representation

* desiderata (what is desired in the interface)

- should be clear and understandable in presenting system's topic
- should be explicit about system's capabilities

- should be easy and attracitve to use for the student

**xdd* these breakdown does not neccessarily correspond to distinct
modules in an ITS. also decisions about any of these issues in any one
component will very likely affect those made for other components



Models of Intelligent Tutoring Systems
The outline for each discussion of a model is organized as follow:

A. Description

Any interesting or important general facts about the model is
mentioned -here. The methodologies or approaches used for each of the
component of the ITS are identified under the following subheadings:

domain expertise

student model

pedagogical expertise

interface

B. Implications for Complex Dynamic Systems
What is applicable and what is not and why with respect to the
dimensions of complexity will be addressed in this section.

C. An example in the GT-MSOCC Domain
The issues raised above will be illustrated and discussed in the
context of an existing complex dynamic system called GT-MSOCC.

(1) SCHOLAR (Carbonell, 1970)
A. Description

SCHOLAR is considered the first intelligent tutoring system ever
developed. Carbonell pioneered the artificial intelligence approach to ITS
where knowledge is explicitly encoded. This approach replaced the
traditional frame-oriented paradigm.

Domain Expert;

The system applies to the geography of South America. This domain
knowledge is represented in a semantic network. The nodes on the network
represent relevant objects and concepts that the system knows about. These
objects are linked together hierarchically in the network.

Student Model

A early version of the "overlay” model (discussed in more details
later) is used. The network can be used to represent the knowledge of an
ideal student. Evaluations on a student's actual performance are identified
with the concepts in the network that are taught.

Pedagogical Expertise

SCHOLAR does not have any sophisticated tutorial strategies. Its main
concern in this respect is to select relevant topics for discussion based on
the distance between nodes on the network and the notion of relevance tags
of these nodes. Decisions are thus very local and at times random. The
student and the system interact in a mixed-initiative dialogue mode.
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Interface

The form of communication is textual. A template matching process
is use to generate and parse simple sentences.

B. Implications for CDS

For factual knowledge such as geography, the notion of nodes and
links can be readily defined. However, for an operator in a complex
dynamic system, facts alone are not sufficient; he needs to possess
procedural knowledge to carry out his tasks as a supervisory controller.
Exactly what the nodes and links mean is not so clear for "how to" type
information. :

Another important aspect of a complex dynamic system that cannot
. be represented with a semantic network is dynamism. gpeciﬁcally, such a
network cannot accommodate the passage of time to reflect the potential
changing states and behavior of a system. Such knowledge is crucial for an
operator in developing his adaptive skills (recall Woods' discussion).’

It is conceivable that semantic nets can be used to represent one
"viewpoint"” of a CDS in an ITS. For example, the complexity of the system
in terms of the number of parts and their interconnectedness could be
represented by several semantic networks at various levels of abstraction.

C. An Example in GT-MSOCC

One of the operator's function is to manually configure a mission
upon request. In order to correctly carry out such a function, an operator
must be taught to follow a sequence of plans. Such procedural knowledge
would not be adequately represented in a semantic net.

However, part of the training of the operator is to acquire some
background knowledge about the system. Factual knowledge such as the
various mission configurations, the list of equipments needed by each
mission and the maximum number of missions supported at any time
could be represented as one or more semantic networks. The goal of the
ITS at this point would be to make sure that the operator knows these facts
about the system before moving on to the various operator functions.
Somehow, the representational scheme used beyond this stage should be
connected to the semantic network(s) for smooth transition and
consistency.

11




(2) WHY (Stevens and Collins, 1977)
A. Description
Domain Fxpert

WHY represents its domain knowledge in rainfall processes with
hierarchical scripts. The authors attempt to capture both temporal and
causal relations between typical sequences of events in these meteorological
processes.

Student Model

There is no student model. A student's performance is evaluated
independently.

Pedagogical Experti

The tutorial strategy implemented in WHY is the Socratic method.
In this method, a tutor asks the student questions to guide him in
developing skills and principles for managing hypotheses and drawing
relevant inferences from data collect. The strategy is captured in a set of
tutorial rules that deals with local decisions about the appropriate questions
to ask based on the student's last response. No global tutorial goals are
considered in these decisions.

Interface

The dialogues between the tutor and the student is strictly textual.
The natural language is processed in a similar fashion as in SCHOLAR.

B. Implications for Complex Dynamic Systems

The issues that evolved from the two major weakness of WHY have
been discussed in length by Wenger. These issues will be explored further
with respect to complex dynamic systems.

Considerine elobal tutorial goal

In the rainfall domain, Stevens and Collins (1977, 1982) examine the
higher-order goals of a human tutor that influence his tutorial decisions.
They suggest that such goals must be incorporated into the pedagogical
module of an ITS. To consider such goals is then to identify the teaching
goals in terms of what a student is supposed to learn. The choice of a
pedagogical approach should be consistent with these goals. It is possible
and likely, especially with respect to complex dynamic systems, that the
approach selected will embody more than one tutorial strategies to achieve

1 the pedagogical objectives.

In terms of the the kind of cognitive situations an operator will

encounter and the type of skills needed to cope with these situations, when
and how may the Socratic method be applicable? One possible direction is to

12



isolate a particular cognitive situation and tutor the operator/student to
develop the corresponding skills in a Socratic style. The situation, which is
a "case" in Socratic terms, could be presented to the student in a scenario of
si\;stem events. The tutor proceeds to asks meaningful questions based on
the student's actions or responses.

There are several problems that immediately come to mind. In a
complex and dynamic world, the various cognitive situations overlap and
interact with each other among all dimensions of complexity. Thus, there
is no assurance that the skills acquired from two isolated situations will
translate to the skills required to manage a single incidence with cognitive
demands of both situations. Because the world is dynamic, events are
evolving in "real time". As a result, a tutorial dialogue occuring within a
scenario must avoid being too obstrusive to the extent of becoming
unnatural. Another potential problem is that important events in the.
scenario may be missed while the dialogue is in progress. Intuitively
speaking, it is not feasible to use only the Socratic style of teaching when the
domain of interest involves a complex dynamic system. It seems that there
may be skills more appropriate than others, and that there may be a more
suitable time in the student's learning process than others to apply the
Socratic method.

R ¢ domain knowledee f Itio] "

The fact that scripts reflect only linear relations between events is
even more profound a limitation in complex dynamic systems. Large
number of components interact with each other in nonlinear and often
unpredictable ways. In order for a student to develop skills to handle
problems such as divided attention and prospective memory, the
representation scheme chosen for the ITS must account for such
nonlinearities.

Another limitation of script-based representation is that only global
aspects of a process are captured in temporal and causal terms. The
suggested functional perspective of the domain knowledge is particularly
relevant in a complex dynamic system. The operator needs to have
knowledge about the workings of each component and how it affects and
constrains other components in the system. This knowledge supports the
operator's many skills such as problem formulation in situations with
multiple faults and conflicting goals. That is, both the "x causes y when"
aspect and the "how x causes y and why" aspect of the domain knowledge
must be captured in the expert model of an ITS.

Besides the above limitations, scripts are not suitable for expressing
complex dynamic worlds for reasons characteristic of such worlds. Scripts
are good for stereotypical sequences of events. In a complex dynamic
system, from the perspective of a supervisory controller, the cause for
concern is more for non-stereotypical sequences of events instead. .
Operators must know not just what normally happens to the system over
time, but also what to do in novel situations. Skilf)s in disturbance
management and reasoning and inferencing abilities are required of these
operators. In any case, the dynamic nature of such a system makes the
task of defining all possible sequences of events a very exhaustive and
impractical ordeal. Moreover, the uncertainty dimension (in terms of

13



system behaviors) makes the grediction of all potential sequences of events
unrealistic. With regards to the issue of psychological plausibility, it is
certainly true that experts do not have a script for every possible situation in
order to solve different problems.

To the extend that the idea of multiple viewpoints in the
representation of domain knowledge is believable, the form of
communication of these viewpoints must go beyond just textual interface.
The advance in computer technology make the use of visual and graphical
techniques in interface design a very viable option (more on this is
discussed in later models).

C. An Example in GT-MSOCC

Consider the possibility of implementing a Socratic style tutor for GT-
MSOCC. A session (or a scenario) in GT-MSOCC has the goal of teaching
the operator how to troubleshoot endpoints for software failures. The
operator's actions and responses are evaluated such that the tutor can pose
}alppropriate questions. The following is a sample list of what might

appen:

1. The operator types "display msocc sched”. Then there is a long
pause...

2. The tutor decides to ask a question:"Do you think you need to check
endpoints now?"

3. If the operator answers "yes", the tutor predicts the operator will
next execute commands that support the goal to check endpoints (eg.
display vip telem).

3a. The tutor then asks "Why do you need to see tac telem page?" to
explore the operator's understanding of the task.

3b. The ogerator may then answer "Because vip3 is an endpoint
equipment for the mission ERBE".

4. If the operator answers "no" to question in item 2, the tutor may ask
"why not?"
4a. student may answer "because ......
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(3) METEOROLOGY Tutor (Brown et al., 1973)
A. Description

This proi')ect launched the work on qualitative models and set the
grounds for subsequent research on SOPHIE (next section).

Domain Expertise

As the name of the system implies, the domain of application is
meteorology. The core technique represents the causal knowledge about
meteorological processes in a qualitative simulation model. Sequences of
events in each process are simulated via a finite-state automata. The
semantic network approach used in SCHOLAR is also implemented in this
system to represent meteorological concepts. :

Student Model
No effort is directed to modeling the student here.

Pedagogical E .

The tutor is a question-answering system. Questions about factual
knowledge from the student are answered in a similar way as in
SCHOLAR. To generate explanations for a question about a process, an
inference tree is built dynamically from the simulation model. This
inference tree describes the temporal and causal relations between events
as related to the question.

Interface

The tutorial dialogues between the tutor and the student is carried
out in natural language form. A simple process of keyword matching is
used to extract the context of a question. Answers to questions about
processes are constructed by joining successively predefined text units that
reside in each state of an automata.

B. Implications for Complex Dynamic Systems

Operator Control Model (Miller, ?) and Operator Fucntion Function
Model (Mitchell, 1987) are two modeling frameworks that involve networks
of finite-state automata. The task of predefining all possible series of events
is replace by the identification of system states. The dynamism of such
systems can then be captured in the state transitions within the network.
Thus, the idea of a dynamic process model is especially befitting with
regards to complex dynamic systems.

The idea of dynamic generation of explanations may be used to
consider a question-answering option for an ITS. The student selects this
mode to acquire or review knowledge about the system. Such an option can
only be supplementary to the actual teaching that is needed to assist the
student in developing the appropriate skills in terms of a complex system.
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_ .. - need better nlp instead of prestored text. in fact, should be able to
take advantage of visual methods in presenting the answer (eg. showing
the inference tree where answer is).

- idea of multiple representations supports the idea of multiple
viewpoints.

- domain representation affects pedagogical decision and vice versa.
that is, teaching goals also affect how we want knowledge to be expressed.
what viewpoints or mental models do we want student to develop of the
system? physical, functional, causal?

C. An Example in GT-MSOCC

- OFM methodology represents operator functions in a
heterarchical/hierarchical network where state transitions reflect system
trisgering events. A tutor for GT-MSOCC may use the OFM for
pedagogical decisions in exploring the student's understanding of the
system and his task. Illustrates the dependency between domain
representation and pedagogical strategies.

- since we already have OFM, may include a g/a mode operator can
choose. Operator may ask questions relating to a system request or
message, its effects, and/or how to fix the problem. Answers may be
explanations, or even suggested steps or actions. Not really a tutor
implemented. do not know if student is actually learning.

- the use of the blackboard for implementing OFM is one way to make
model explicit. thus, operator can view the blackboard and see what he is
expected to do.

(4) SOPHIE (Brown et al., 1974, 1976, 1982)
A. Description
Domain Expertise

The domain of application for the entire SOPHIE project is the
troubleshooting of electronic circuits. Troubleshooting skills involve the
ability to collect various measurements, to hypothesize the potential
problem areas and to test such hypotheses.

SOPHIE-I and SOPHIE-II represent the domain knowledge in
multiple ways. A simulation model represents the mathematical model of
the circuit. Procedural knowledge is captured in a set of specialists based
on this lfnodel, while declarative knowledge is reflected in a semantic
network,

In SOPHIE-III, domain knowledge is represented in two separate
module: the troubleshooting expertise and the electronics expertise. The
troubleshooting expertise has general troubleshooting knowledge for
managing a set of hypotheses. The electronics expertise has both general
electronic knowledge and circuit-specific knowledge represented in three
different levels: components model, production rules and behavior trees
each linked with a different reasoning mechanism and input information.
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Student Model
| Although conéidered, this portion of the research was never
implemented.

Pedagogical Experti

The pedagogical paradigm of the SOPHIE project is to provide a
reactive learning environment for the student. In such an environment,
the student has the opportunity to test his ideas and knowledge, and receive
constructive feedback and advice.

In SOPHIE-I, pedagogy consists of generating meanin, feedback
to a student's action by making inferences based on the knowledge
embedded in the simulation model. An articulate expert troubleshooter in
SOPHIE-II explains the reasoning and strategies underlying these
inferences. The representational scheme in SOPHIE-III works as an
inference engine to reflect human-like reasoning. The idea is to use this
engine for coaching and modeling the student in an active environment.
Unfortunately, this part of SOPHIE-III was never completed.

Interface

SOPHIE and the student interacts via a very robust natural language
interface. The natural language processing is implemented with semantic
grammers. The idea is to represent a sentence based on domain-dependent
semantic catogories instead of its syntax.

B. Implications for Complex Dynamic Systems
C. An Example in GT-MSOCC

(5) STEAMER (William, Hollan, Stevens, 1982)
A. Description

This project pioneered the notion of graphical simulations in
training systems. Projects such as the Intelligent Maintenance Training
System (Munro et al., 1985) and the Recovery Boiler Tutor (Woolf et al., 1986)
have been influenced by STEAMER.

D in E .
The domain of application is operating steam propulsion plants in
large ships. The model of the domain knowledge is purely mathematical.

From the knowledge communication perspective, STEAMER does not really
have a model of the expertise.

Student Model
STEAMER does not have a student model (?)
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STEAMER presents the steam propulsion J)lant in an interactive and
inspectable graphical simulation form. The student can manipulate
various aspect of the simulated plant and examine the effects of his actions.
The pedagogical goal is to provide a means for the student to acquire a
mental model of a complex physical system and at the same time learn to
operate such a system.

To further support this goal, two other modules are implemented.
When a student is running a particular procedure, the tutorial module can
furnish feedback in the form of explanations based on the graphical
abstractions that define the simulated plant. Another module called the
feedback minilab allows the student to experiment with different control
devices. The student can put together the components for a device and
S}'}‘EAMER will test it by integrating the simulated device with the rest of
the system.

Interface

Within the STEAMER's graphical interface, the system and the
student interact through simple text processing. (eg. menus and options).

More importantly, the graphical description of STEAMER's
simulation model initiated the principle of conceptual fidelity. The goal is
to present a conceptual view and not the physical view of a complex system.
This view when presented to the student is considered faithful to the actu
sg;stem if it expresses the same view possessed by experts. Such a view
should reflect the mental model that experts use when they reason about
the system.

B. Implications for Complex Dynamic Systems
C. An Example in GT-MSOCC
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